See the pigeon-hole principle - in the same way you can't fit you can't 100 pigeons into 10 holes, you can't uniquely convert 3 values into 1 value (with all values of the same size). There will have to be duplicates.
Now, if you could have a number with 3x as many bits as the vector values, the problem becomes fairly easy:
// convert x, y and z to the range 0-...
x -= minimum possible value
y -= minimum possible value
z -= minimum possible value
mult = maximum possible value + 1
hash = x * mult * mult + y * mult + z
If you're having trouble understanding the above, just take the example of the range of the values being 0-99. We'd multiple x
by 100*100 = 10000
and y
by 100
, so the hash would be a decimal value with (at most) 6 digits with x
, y
and z
all next to each other, guaranteed to not overlap:
x = 12
y = 34
z = 56
hash = 123456
Now this same idea will hold for any maximum value by just changing the base / radix.
If there isn't any overlap in some base, each unique combination of values of x
, y
and z
will result in a unique hash.
This is by far the simplest approach, although it doesn't produce a particularly good hash, so it depends what you want to use it for - there might be a way to uniquely convert this number to another number which will be a good hash.