I am trying to take the fast Fast Fourier Transform. I am basing my calculation off of the Surge. I am having trouble getting correct results. When I take the fft of a 1000 hz sound I get something that looks like this. . When i take the same tone and use python I get something that looks way more correct
. The python code looks like:
import numpy as np
import scipy.io.wavfile
import numpy.fft
import matplotlib.pyplot as plt
FILENAME = 'beep.wav'
fs, data = scipy.io.wavfile.read(FILENAME)
data = data[:801]
spacing = 1 / float(fs)
freq = numpy.fft.rfft(data)
freq_power = np.abs(freq)
a = 1 / (2 * spacing)
b = (len(data) + 1) // 2
freq_axis = np.linspace(0, a, b)
plt.plot(freq_axis, freq_power)
plt.show()
The swift code looks like
import Accelerate
public func sqrt(x: [Float]) -> [Float] {
var results = [Float](count: x.count, repeatedValue: 0.0)
vvsqrtf(&results, x, [Int32(x.count)])
return results
}
public func fft(input: [Float]) -> [Float] {
var real = [Float](input)
var imaginary = [Float](count: input.count, repeatedValue: 0.0)
var splitComplex = DSPSplitComplex(realp: &real, imagp: &imaginary)
let length = vDSP_Length(floor(log2(Float(input.count))))
let radix = FFTRadix(kFFTRadix2)
let weights = vDSP_create_fftsetup(length, radix)
println(weights)
vDSP_fft_zip(weights, &splitComplex, 1, 8, FFTDirection(FFT_FORWARD))
var magnitudes = [Float](count: input.count, repeatedValue: 0.0)
vDSP_zvmags(&splitComplex, 1, &magnitudes, 1, vDSP_Length(input.count))
var normalizedMagnitudes = [Float](count: input.count, repeatedValue: 0.0)
vDSP_vsmul(sqrt(magnitudes), 1, [2.0 / Float(input.count)], &normalizedMagnitudes, 1, vDSP_Length(input.count))
vDSP_destroy_fftsetup(weights)
return normalizedMagnitudes
}
To reiterate. The swift code is the code giving unexpected results. What am I doing wrong?