I have a multilevel dataframe df
. As columns, I have different "objects"
I analyze. As rows index , I have a Case ID lc
, and time t
.
I need to find, for each case lc
, the time t
(ideally interpolated, but
closest value is fine enough) at which each object reached a target value.
This target value is a function of the given object at time t==0
.
import pandas as pd
print(pd.__version__)
0.16.2
Dummy data set example:
data = {1: {(1014, 0.0): 20.25,
(1014, 0.0991): 19.08,
(1014, 0.1991): 18.43,
(1014, 0.2991): 19.03,
(1014, 0.3991): 18.71,
(1015, 0.0): 20.22,
(1015, 0.0991): 19.3,
(1015, 0.1991): 18.68,
(1015, 0.2991): 18.22,
(1015, 0.3991): 17.84,
(1016, 0.0): 21.75,
(1016, 0.0991): 19.97,
(1016, 0.1991): 19.65,
(1016, 0.2991): 19.29,
(1016, 0.3991): 18.94
},
2: {(1014, 0.0): 29.11,
(1014, 0.0991): 28.68,
(1014, 0.1991): 28.27,
(1014, 0.2991): 27.46,
(1014, 0.3991): 26.96,
(1015, 0.0): 29.22,
(1015, 0.0991): 28.64,
(1015, 0.1991): 28.18,
(1015, 0.2991): 27.74,
(1015, 0.3991): 27.25,
(1016, 0.0): 29.17,
(1016, 0.0991): 28.68,
(1016, 0.1991): 28.17,
(1016, 0.2991): 27.68,
(1016, 0.3991): 27.18
},
3: {(1014, 0.0): 22.01,
(1014, 0.0991): 21.5,
(1014, 0.1991): 21.18,
(1014, 0.2991): 20.58,
(1014, 0.3991): 20.21,
(1015, 0.0): 21.81,
(1015, 0.0991): 21.46,
(1015, 0.1991): 21.11,
(1015, 0.2991): 20.78,
(1015, 0.3991): 20.42,
(1016, 0.0): 21.82,
(1016, 0.0991): 21.49,
(1016, 0.1991): 21.11,
(1016, 0.2991): 20.75,
(1016, 0.3991): 20.37
}}
df = pd.DataFrame(data).sort()
df.index.names=['case', 't']
Dataframe looks thus like:
1 2 3
case t
1014 0.0000 20.25 29.11 22.01
0.0991 19.08 28.68 21.50
0.1991 18.43 28.27 21.18
0.2991 19.03 27.46 20.58
0.3991 18.71 26.96 20.21
1015 0.0000 20.22 29.22 21.81
0.0991 19.30 28.64 21.46
0.1991 18.68 28.18 21.11
0.2991 18.22 27.74 20.78
0.3991 17.84 27.25 20.42
1016 0.0000 21.75 29.17 21.82
0.0991 19.97 28.68 21.49
0.1991 19.65 28.17 21.11
0.2991 19.29 27.68 20.75
0.3991 18.94 27.18 20.37
Target values are a function of the values at time t==0
.
typically, this would be k=0.5 for half-time period. For the current sample,we will take k=0.926
Since values are sorted, it is ok to take the first lines for each case.
targets = df.groupby(level='case').first() * 0.926
print(targets)
1 2 3
case
1014 18.75150 26.95586 20.38126
1015 18.72372 27.05772 20.19606
1016 20.14050 27.01142 20.20532
Now, How could I simply build the following dataframe, which shows
time t
at wich each object reach target value calculated above?
1 2 3
case
1014 0.3991 0.3991 0.2991
1015 0.1991 0.3991 0.3991
1016 0.0991 0.3991 0.3991