I have tried to implement this knapsack problem solution algorithm in JavaScript, but the solutions s_opt I get has a total weight greater than the L_max.
What am I doing wrong?
I suspect it could be something related to Closures in recursion.
/*
GENERAL:
Assume we have a knapsack and we want to bring as much stuff as possible.
Of each thing we have several variants to choose from. Each of these variants have
different value and takes different amount of space.
DEFINITIONS:
L_max = integer, size of the knapsack for the entire problem having N items
l = matrix, having the elements l[i-1][j-1] representing the space taken
by variant j of item i (-1 since indexing the matrices has index starting on zero, i.e. item i is stored at position i-1)
p = matrix, having the elements p[i-1][j-1] representing the value given by
by variant j of item i
n = total number of items (used in a sub-problem)
N = total number of items (used in the full problem, N >= n)
s_opt = vector having the optimal combination of variant selections s_i, i.e. s_opt = arg max p_sum
*/
function knapsack(L_max,l,p) {
// constructing (initializing) - they are private members
var self = this; // in order for private functions to be able read variables
this.N = l.length;
var DCached = []; // this is only used by a private function so it doesnt need to made public using this.*
this.s_opt = [];
this.p_mean = null;
this.L_max = L_max;
// define public optimization function for the entire problem
// when this is completed the user can read
// s_opt to get the solution and
// p_mean to know the quality of the solution
this.optimize = function() {
self.p_mean = D(self.N,self.L_max) / Math.max(1,self.N);
}
// define private sub-problem optimization function
var D = function(n,r) {
if (r<0)
return -Infinity;
if (n==0)
return 0;
if(DCached[n-1] != null) {
if(DCached[n-1][r-1] != null) {
return DCached[n-1][r-1];
}
}
var p_max = -Infinity;
var p_sum;
var J = l[n-1].length;
for(var j = 0; j < J; j++) {
p_sum = p[n-1][j] + D( n-1 , r - l[n-1][j] );
if(p_sum>p_max) {
p_max = p_sum;
self.s_opt[n-1] = j;
}
}
DCached[n-1] = [];
DCached[n-1][r-1] = p_max;
return p_max;
}
}
The client using this knapsack solver does the following:
var knapsackSolution = new knapsack(5,l,p);
knapsackSolution.optimize();
// now the client can access knapsackSolution.s_opt containing the solution.