I am running the following for loop for the gwr.basic function in the GWmodel package in R. What I need to do is to collect the mean of estimate parameter for any given bandwidth.
the code looks like:
library(GWmodel)
data("DubVoter")
#Dub.voter
LARentMean = list()
for (i in 20:21)
{
gwr.res <- gwr.basic(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl + LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, bw = i, kernel = "bisquare", adaptive = TRUE, F123.test = TRUE)
a <- mean(gwr.res$SDF$LARent)
LARentMean[i] <- a
}
outcome = unlist(LARentMean)
> outcome
[1] -0.1117668 -0.1099969
However it is terribly slow at returning the result. I need a much wider range such as 20:200. Is there a way to speed the process up? If not, how to have a stepped range let's say 20 to 200 with steps of 5 to reduce the number of operations?
I am a python user new to R. I read on SO that R is well known for being slow at for loops and that there are more efficient alternatives. More clarity on this point would be welcomed.