I posted this also in StackExchange, so sorry if you consider duplicate, but I really don´t know if these are the same or different boards (Exchange and Overflow). My profile appears different here.
==========================
There is a faster algorithm to check if a given integer is a sum (or difference) of two cubes n=a^3+b^3
I don´t know if this algorithm is already known (probably yes, but I can´t find it on books or internet). I discovered and use it to compute integers until n < 10^18
This process uses a single trick
4(a^3+b^3)/(a+b) = (a+b)^2 + 3(a-b)^2)
We don´t know in advance what would be "a" and "b" and so what also would be "(a+b)", but we know that "(a+b)" should certainly divide (a^3+b^3) , so if you have a fast primes factorizing routine, you can quickly compute each one of divisors of (a^3+b^3) and then check if
(4(a^3+b^3)/divisor - divisor^2)/3 = square
When (and if) found a square, you have divisor=(a+b) and sqrt(square)=(a-b) , so you have a and b.
If not square found, the number is not sum of two cubes.
We know divisor < (4(a^3+b^3)^(1/3) and this limit improves the task, because when you are assembling divisors of (a^3+b^3) immediately discard those greater than limit.
Now some comparisons with other algorithms - for n = 10^18, by using brute force you should test all numbers below 10^6 to know the answer. On the other hand, to build all divisors of 10^18 you need primes until 10^9.
The max quantity of different primes you could fit into 10^9 is 10 (2*3*5*7*11*13*17*19*23*29 = 5*10^9) so we have 2^10-1 different combinations of primes (which assemble the divisors) to check in worst case, many of them discared because limit.
To compute prime factors I use a table with first 60.000.000 primes which works very well on this range.
Miguel Velilla