I am using geom_tile
and facet_grid
to plot some data which is factored on its ptype
column. A MWE follows:
library(ggplot2)
data<-"T So Sigma Gamma Rtot Sof Sff ptype
8078 10 3 0 0.6 3 3 3 factor1
8089 10 3 0.1 0.6 3 3 3 factor1
8100 10 3 0.2 0.6 3 3 3 factor1
8111 10 3 0.3 0.6 3 3 3 factor1
8122 10 3 0.4 0.6 3 3 3 factor1
8133 10 3 0.5 0.6 3 3 3 factor1
8144 10 3 0.6 0.6 3 3 3 factor1
8155 10 3 0.7 0.6 3 3 3 factor1
8166 10 3 0.8 0.6 3 3 3 factor1
8177 10 3 0.9 0.6 3 3 3 factor1
8188 10 3 1 0.6 3 3 3 factor1
49304 20 3 0 0.6 3 3 3 factor1
49315 20 3 0.1 0.6 3 3 3 factor1
49326 20 3 0.2 0.6 3 3 3 factor1
49337 20 3 0.3 0.6 3 3 3 factor1
49348 20 3 0.4 0.6 3 3 3 factor1
49359 20 3 0.5 0.6 3 3 3 factor1
49370 20 3 0.6 0.6 3 3 3 factor1
49381 20 3 0.7 0.6 3 3 3 factor1
49392 20 3 0.8 0.6 3 3 3 factor1
49403 20 3 0.9 0.6 3 3 3 factor1
49414 20 3 1 0.6 3 3 3 factor1
76198 30 3 0 0.6 3.76171 3 3.76171 factor2
76209 30 3 0.1 0.6 3.76171 3 3.76171 factor2
76220 30 3 0.2 0.6 3.76171 3 3.76171 factor2
76231 30 3 0.3 0.6 3.76171 3 3.76171 factor2
76242 30 3 0.4 0.6 3.76171 3 3.76171 factor2
76253 30 3 0.5 0.6 3.76171 3 3.76171 factor2
76264 30 3 0.6 0.6 3.76171 3 3.76171 factor2
76275 30 3 0.7 0.6 3.76171 3 3.76171 factor2
76286 30 3 0.8 0.6 3.76171 3 3.76171 factor2
76297 30 3 0.9 0.6 3.84754 0.1 0.16195 factor3
76309 30 3 1 0.6 3.84754 0.1 0.16195 factor3
127588 40 3 0 0.6 5.35608 3 5.35608 factor2
127599 40 3 0.1 0.6 5.35608 3 5.35608 factor2
127610 40 3 0.2 0.6 5.35608 3 5.35608 factor2
127623 40 3 0.3 0.6 5.35608 3 5.35608 factor2
127634 40 3 0.4 0.6 5.35825 0 0 factor3
127645 40 3 0.5 0.6 5.35825 0 0 factor3
127656 40 3 0.6 0.6 5.47198 0.2 0.51703 factor3
127669 40 3 0.7 0.6 5.56348 0.2 0.51703 factor3
127680 40 3 0.8 0.6 5.73882 0.8 1.85069 factor3
127691 40 3 0.9 0.6 6.03841 0.9 2.05019 factor3
127702 40 3 1 0.6 6.37118 1.6 3.30385 factor3
162297 50 3 0 0.6 7.36898 3 7.36898 factor2
162309 50 3 0.1 0.6 7.36898 3 7.36898 factor2
162321 50 3 0.2 0.6 7.36898 3 7.36898 factor2
162333 50 3 0.3 0.6 7.49796 0.1 0.42697 factor3
162344 50 3 0.4 0.6 7.64096 0.1 0.42697 factor3
162357 50 3 0.5 0.6 7.78737 0.4 1.54882 factor3
162371 50 3 0.6 0.6 8.358 0.8 2.78492 factor3
162389 50 3 0.7 0.6 8.92932 1.1 3.59043 factor3
162404 50 3 0.8 0.6 9.58623 1.7 4.97184 factor3
162416 50 3 0.9 0.6 10.2468 2.1 5.77926 factor3
162448 50 3 1 0.6 10.8984 2.9 7.20516 factor3
195012 80 3 0 0.6 15.9047 3 15.9047 factor2
195028 80 3 0.1 0.6 17.0201 0.1 1.68242 factor3
195058 80 3 0.2 0.6 18.8161 0.4 5.00423 factor3
195086 80 3 0.3 0.6 21.2521 0.8 7.83781 factor3
195128 80 3 0.4 0.6 23.3847 1.4 10.8074 factor3
195175 80 3 0.5 0.6 25.4261 2 13.0496 factor3
195304 80 3 0.6 0.6 27.1939 2.6 14.8517 factor3
195342 80 3 0.7 0.6 28.8538 3.4 16.8773 factor3
195373 80 3 0.8 0.6 30.3827 3.8 17.7612 factor3
195418 80 3 0.9 0.6 31.8626 4.8 19.7527 factor3
195513 80 3 1 0.6 33.201 5.7 21.341 factor3
231307 60 3 0 0.6 9.80308 3 9.80308 factor2
231319 60 3 0.1 0.6 9.80308 3 9.80308 factor2
231330 60 3 0.2 0.6 10.0912 0.1 0.68484 factor3
231343 60 3 0.3 0.6 10.4219 0.3 1.85263 factor3
231354 60 3 0.4 0.6 11.1548 0.6 3.2646 factor3
231367 60 3 0.5 0.6 12.1336 1.1 5.1274 factor3
231378 60 3 0.6 0.6 13.1552 1.6 6.62604 factor3
231389 60 3 0.7 0.6 14.1498 1.8 7.15294 factor3
231401 60 3 0.8 0.6 15.1461 2.6 9.00079 factor3
231412 60 3 0.9 0.6 16.1305 3.2 10.1851 factor3
231423 60 3 1 0.6 17.0404 4 11.5972 factor3
263033 90 3 0 0.6 19.5131 3 19.5131 factor2
263050 90 3 0.1 0.6 22.1254 0.2 4.33427 factor3
263066 90 3 0.2 0.6 25.5275 0.6 8.83941 factor3
263079 90 3 0.3 0.6 28.7836 1.1 12.233 factor3
263094 90 3 0.4 0.6 31.494 1.7 15.1418 factor3
263109 90 3 0.5 0.6 33.8865 2.3 17.3951 factor3
263122 90 3 0.6 0.6 35.9751 3.1 19.785 factor3
263140 90 3 0.7 0.6 37.8814 4.1 22.2404 factor3
263156 90 3 0.8 0.6 39.6486 4.6 23.3014 factor3
263171 90 3 0.9 0.6 41.2937 5.5 25.0511 factor3
263187 90 3 1 0.6 42.8274 6.4 26.6386 factor3
278614 70 3 0 0.6 12.6641 3 12.6641 factor2
278634 70 3 0.1 0.6 12.8453 0.1 1.08362 factor3
278649 70 3 0.2 0.6 13.6719 0.2 1.99456 factor3
278682 70 3 0.3 0.6 14.9937 0.5 4.13083 factor3
278741 70 3 0.4 0.6 16.5076 1 6.65247 factor3
278768 70 3 0.5 0.6 18.0436 1.6 8.91378 factor3
278798 70 3 0.6 0.6 19.522 2.1 10.426 factor3
278842 70 3 0.7 0.6 20.8664 2.5 11.4774 factor3
278881 70 3 0.8 0.6 22.1743 3.5 13.7218 factor3
278931 70 3 0.9 0.6 23.3991 4.1 14.8892 factor3
279090 70 3 1 0.6 24.6061 4.9 16.2968 factor3
370330 100 3 0 0.6 23.4521 3 23.4521 factor2
370344 100 3 0.1 0.6 28.6985 0.3 7.83825 factor3
370365 100 3 0.2 0.6 33.7053 0.8 13.3056 factor3
370386 100 3 0.3 0.6 37.4726 1.2 16.0314 factor3
370406 100 3 0.4 0.6 40.6543 1.9 19.5437 factor3
370427 100 3 0.5 0.6 43.3269 2.6 22.1924 factor3
370463 100 3 0.6 0.6 45.7282 3.3 24.3216 factor3
370492 100 3 0.7 0.6 47.8327 4.4 27.0937 factor3
370520 100 3 0.8 0.6 49.7812 5 28.3945 factor3
370557 100 3 0.9 0.6 51.6038 5.7 29.7796 factor3
370602 100 3 1 0.6 53.3879 7.2 32.4554 factor3
412193 110 3 0 0.6 27.6951 3 27.6951 factor2
412204 110 3 0.1 0.6 36.5918 0.4 12.0252 factor3
412215 110 3 0.2 0.6 42.7655 0.9 17.4787 factor3
412226 110 3 0.3 0.6 47.1396 1.6 21.9812 factor3
412237 110 3 0.4 0.6 50.7359 2.2 24.7757 factor3
412248 110 3 0.5 0.6 53.6021 2.9 27.3664 factor3
412259 110 3 0.6 0.6 56.2749 3.7 29.762 factor3
412270 110 3 0.7 0.6 58.5612 4.8 32.4988 factor3
412281 110 3 0.8 0.6 60.7087 5.5 34.0162 factor3
412292 110 3 0.9 0.6 62.673 6.7 36.3154 factor3
412303 110 3 1 0.6 64.5379 7.8 38.2264 factor3
430210 120 3 0 0.6 32.1833 3 32.1833 factor2
430221 120 3 0.1 0.6 45.6131 0.4 15.1777 factor3
430232 120 3 0.2 0.6 52.7576 1 22.0867 factor3
430243 120 3 0.3 0.6 57.6179 1.6 26.0984 factor3
430254 120 3 0.4 0.6 61.516 2.3 29.5158 factor3
430265 120 3 0.5 0.6 64.6629 3.2 32.8588 factor3
430276 120 3 0.6 0.6 67.5344 3.8 34.6713 factor3
430288 120 3 0.7 0.6 69.994 4.5 36.5286 factor3
430299 120 3 0.8 0.6 72.2754 5.8 39.5058 factor3
430310 120 3 0.9 0.6 74.3846 6.6 41.0843 factor3
430321 120 3 1 0.6 76.3764 8.3 44.0881 factor3
466534 130 3 0 0.6 36.9146 3 36.9146 factor2
466545 130 3 0.1 0.6 55.7089 0.5 20.4219 factor3
466556 130 3 0.2 0.6 63.5321 1.1 27.0676 factor3
466567 130 3 0.3 0.6 68.8209 1.9 32.1692 factor3
466578 130 3 0.4 0.6 72.9612 2.6 35.3899 factor3
466589 130 3 0.5 0.6 76.4129 3.4 38.296 factor3
466600 130 3 0.6 0.6 79.3824 4 40.1256 factor3
466611 130 3 0.7 0.6 82.0293 4.9 42.4973 factor3
466622 130 3 0.8 0.6 84.461 6.4 45.847 factor3
466633 130 3 0.9 0.6 86.6854 6.9 46.8273 factor3
466644 130 3 1 0.6 88.7074 8.7 50.0145 factor3
475416 140 3 0 0.6 41.8711 3 41.8711 factor2
475427 140 3 0.1 0.6 66.4409 0.5 24.4193 factor3
475438 140 3 0.2 0.6 75.0445 1.1 31.5349 factor3
475449 140 3 0.3 0.6 80.6704 1.9 36.9064 factor3
475460 140 3 0.4 0.6 85.0171 2.6 40.2685 factor3
475471 140 3 0.5 0.6 88.651 3.5 43.6432 factor3
475482 140 3 0.6 0.6 91.813 4.3 46.0965 factor3
475493 140 3 0.7 0.6 94.6003 5.5 49.1544 factor3
475504 140 3 0.8 0.6 97.1285 6.4 51.1477 factor3
475515 140 3 0.9 0.6 99.521 7.4 53.1594 factor3
475526 140 3 1 0.6 101.678 9 55.9788 factor3"
dsub<-read.table(text=data)
dsub<-data.frame(dsub)
dsub$ptype<-factor(dsub$ptype,levels=c("factor1","factor2","factor3"))
p<- ggplot(dsub, aes(x=T, y=Sigma,fill=cut(Rtot, c(0,10,20,30,40,50,60,70,Inf))))
p<- p + geom_tile() + scale_fill_brewer(type="seq",palette = "YlGn")+facet_grid(~ptype)
p<- p + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(expand=c(0,0))
p
Plotting it appears as follows:
Notice that the three different sections fit together like puzzle pieces! The factor indicates where the boundary is.
I'd like to combine these sections together in the same graph, with some thicker black lines separating each region. Is there a way to do this?