3

We have XSENS MTi IMU-Device and use the ROS-Framework (Ubuntu / Fuerte). We subscribe to the IMU-Data and all data looks good except orientation.

In Euler-Outputmode like in Quaternion-Outputmode the values are constantly changing. Not randomly, they increase or decrease slowly at a more or less constant rate, and sometimes I observed the change to flatten out and then change it's direction.

When the Value at Second X may be:

x: 7.79210457616
y: -6.58661204898
z: 41.2841955308

the Z value changes in a range of about 10 within a few seconds (10-20 seconds I think).

What can cause this behaviour? Do we misinterpret the data or is there something wrong with the driver? The strange thing is, this also happend with 2 other drivers, and one other IMU device (we have 2). Same results in each combination.

Feel free to ask for more precise data or whatever you'd like to know that may be able to help us out. We are participating at the Spacebot-Cup in November, so it would be quite a relief to get the IMU done. :)

Sergei Danielian
  • 4,938
  • 4
  • 36
  • 58

2 Answers2

3

Perfectly normal if you have no magnetometer to give a corrected heading.

Gyroscope alone measures rate of turn only, and has no idea of orientation at any given time on any axis. Integrating the rate of turn gives the heading if you know the initial heading and the gyro is 100% accurate. It drifts anyway, even if it's perfectly calibrated, as you are sampling at discrete intervals rather than continuously.

Adding an accelerometer will at least fix the downward direction (because it measures gravity, which is towards the Earth's centre). This will keep the Z axis solution aligned with vertical, but it won't fix the horizontal direction (the heading or yaw). That will continue to drift, as you are seeing.

Adding a magnetometer will fix the heading relative to the Earth's magnetic field. This will give you a heading relative to magnetic North. You will need to apply a shift for local magnetic declination to get True North. These are generally available on line and reasonably constant over tens of km. Google ITREF.

Some integrated sensors don't have a magnetometer. That's why the heading drifts. Units like the MPU6050 have firmware built in, and can access a magnetometer, but the usual firmware doesn't use it, so you have to implement Madgwick, etc., on your micro controller or a connected PC anyway. Bosch have a new single module with a processing unit built in. Hopefully, it uses 9 DOF rather than the 6 you get with the DMP on the MPU6050.

Magnetic sensors are accurate to about 2 degrees. Local magnetic declination corrections also have an error. You may be able to perform additional calibrations by using a GPS on a long base line to get better results. It's also worth noting that heading and course made good are often different, due to crosswind / cross currents.

The Madgwick algorithm is fairly stable and easy to implement, and uses fewer resources than a Kalman filter, which needs to perform matrix inversion. It still gives minor jitter, but minor smoothing of results shouldn't induce too much lag.

glenn
  • 31
  • 2
2

If you have the IMU version, I assume that no signal processing has been done on the device. (but I don't know the product). So the data you get for the orientation should be only the integral of the gyroscope data.

The drift you can see is normal and can come from the integration of the noise, a bad zero rate calibration, or the bias of the gyroscope.

To correct this drift, we usually use an AHRS or a VRU algorithm (depending the need of a corrected yaw). It's a fusion sensor algorithm which take the gravity from the accelerometer and the magnetometer data (for AHRS) to correct this drift.

The algorithms often used are the Kalman filter and the complementary filter (Madgwick/Mahony).

It's not an easy job and request a bit of reading and experimenting on matlab/python to configure these filters :)

Guest
  • 21
  • 2