I just wonder what is the maximum number of digits not to lose any precision when converting double to float.
Maybe you don't realize it, but the concept of N digits precisions is already ambigous. Doubtlessly you meant "N digits precision in base 10". But unlike humans, our computers work with Base 2.
Its not possible to convert every number from Base X to Base Y (with a limited amount of retained digits) without loss of precision, e.g. the value of 1/3rd is perfectly accurately representable in Base 3 as "0.1". In Base 10 it has an infinite number of digits 0.3333333333333... Likewise, commonly perfectly representable numbers in Base 10, e.g. 0.1 need an infinite number of digits to be represented in Base 2. On the other hand, 0.5 (Base 10) is peferectly accurately representable as 0.1 (Base 2).
So back to
I just wonder what is the maximum number of digits not to lose any precision when converting double to float.
The answer is "it depends on the value". The commonly cited rule of thumb "float has about 6 to 7 digits decimal precision" is just an approximation. It can be much more or much less depending on the value.
When dealing with floating point the concept of relative accuracy is more useful, stop thinking about "digits" and replace it with relative error. Any number N (in range) is representable with an error of (at most) N / accuracy, and the accuracy is the number of mantissa bits in the chosen format (e.g. 23 (+1) for float, 52 (+1) for double). So a decimal number represented as a float is has a maximum approximation error of N / pow(2, 24). The error may be less, even zero, but it is never greater.
The 23+1 comes from the convention that floating point numbers are organized with the exponent chosen such that the first mantissa bit is always a 1 (whenever possible), so it doesn't need to be explicitly stored. The number of physically stored bits, e.g. 23 thus allows for one extra bit of accuracy. (There is an exceptional case where "whenever possible" does not apply, but lets ignore that here).
TL;DR: There is no fixed number of decimal digits accuracy in float or double.