Assuming you have only two graphs and both contain the same set of vertices without duplicate edges you can use combine edges and use groupEdges
method on a new graph:
val graph1: Graph[T,Double] = ???
val graph2: Graph[T,Double] = ???
Graph(graph1.vertices, graph1.edges.union(graph2.edges))
.groupEdges((val1, val2) => (val1 + val2) / 2.0)
or a little bit more universal:
Graph(graph1.vertices, graph1.edges.union(graph2.edges))
.mapEdges(e => (e.attr, 1.0))
.groupEdges((val1, val2) => (val1._1 + val2._1, val1._2 + val2._2))
.mapEdges(e => e.attr._1 / e.attr._2)
If that is not enough you can combine values and create a new graph from scratch:
def edgeToPair (e: Edge[Double]) = ((e.srcId, e.dstId), e.attr)
val pairs1 = graph1.edges.map(edgeToPair)
val pairs2 = graph2.edges.map(edgeToPair)
// Combine edges
val newEdges = pairs1.union(pairs2)
.aggregateByKey((0.0, 0.0))(
(acc, e) => (acc._1 + e, acc._2 + 1.0),
(acc1, acc2) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
).map{case ((srcId, dstId), (acc, count)) => Edge(srcId, dstId, acc / count)}
// Combine vertices assuming there are no conflicts
// like different labels
val newVertices = graph1.vertices.union(graph2.vertices).distinct
// Create new graph
val newGraph = Graph(newVertices, newEdges)
where aggregateByKey
can be replaced by groupByKey
followed by mapping that requires all values at once like median.