EDIT 2, 9/1 See my answer below!
Pretty new at Python and Pandas here. I've got a script here that uses a for loop to query my database using each line in my list. That all works great, but I can't figure out how to build a data frame from the results of that loop. Any and all pointers are welcome!
#Remove stuff
print "Cleaning list"
def multiple_replacer(key_values):
replace_dict = dict(key_values)
replacement_function = lambda match: replace_dict[match.group(0)]
pattern = re.compile("|".join([re.escape(k) for k, v in key_values]), re.M)
return lambda string: pattern.sub(replacement_function, string)
multi_line = multiple_replacer(key_values)
print "Querying Database..."
for line in source:
brand_url = multi_line(line)
#Run Query with cleaned list
mysql_query = ("select ub.url as 'URL', b.name as 'Name', b.id as 'ID' from api.brand b join api.url_brand ub on b.id=ub.brand_id where ub.url like '%%%s%%' and b.deleted=0 group by 3;" % brand_url)
list1 = []
brands = my_query('prod', mysql_query)
print "Writing CSV..."
#Create DF and CSV
for row in brands:
list1.append({"URL":row['URL'],"Name":['Name'],"ID":['ID']})
if brands.shape == (3,0):
df1 = pd.DataFrame(data = brands, columns=['URL','Name','ID'])
output = df1.to_csv('ongoing.csv',index=False)
EDIT 8/30 Here is my edit, attempting to use zyxue's method:
#Remove stuff
print "Cleaning list"
def multiple_replacer(key_values):
replace_dict = dict(key_values)
replacement_function = lambda match: replace_dict[match.group(0)]
pattern = re.compile("|".join([re.escape(k) for k, v in key_values]), re.M)
return lambda string: pattern.sub(replacement_function, string)
multi_line = multiple_replacer(key_values)
print "Querying Database..."
for line in source:
brand_url = multi_line(line)
#Run Query with cleaned list
mysql_query = ("select ub.url as 'URL', b.name as 'Name', b.id as 'ID' from api.brand b join api.url_brand ub on b.id=ub.brand_id where ub.url like '%%%s%%' and b.deleted=0 group by 3;" % brand_url)
brands = my_query('prod', mysql_query)
print "Writing CSV..."
#Create DF and CSV
records = []
for row in brands:
records.append({"URL":row['URL'],"Name":['Name'],"ID":['ID']})
if brands.shape == (3,0):
records.append(dict(zip(brands, ['URL', 'Name', 'ID'])))
df1 = pd.DataFrame.from_records(records)
output = df1.to_csv('ongoing.csv', index=False)
but this only returns a blank CSV. I'm sure I'm applying it wrong.