The following problem is an exam exercise I found from an Artificial Intelligence course.
"Suggest a heuristic mechanism that allows this problem to be solved, using the Hill-Climbing algorithm. (S=Start point, F=Final point/goal). No diagonal movement is allowed."
Since it's obvious that Manhattan Distance or Euclidean Distance will send the robot at (3,4) and no backtracking is allowed, what is a possible solution (heuristic mechanism) to this problem?
EDIT: To make the problem clearer, I've marked some of the Manhattan distances on the board:
It would be obvious that, using Manhattan distance, the robot's next move would be at (3,4) since it has a heuristic value of 2 - HC will choose that and get stuck forever. The aim is try and never go that path by finding the proper heuristic algorithm.