The two-dimensional list looks like:
1 | 2 | 3
- - - - -
4 | 5 | 6
- - - - -
7 | 8 | 9
Or in pure haskell
[ [1,2,3], [4,5,6], [7,8,9] ]
The expected output for diagonals [ [1,2,3], [4,5,6], [7,8,9] ]
is
[ [1], [4, 2], [7, 5, 3], [8, 6], [9] ]
Writing allDiagonals
(to include anti-diagonals) is then trivial:
allDiagonals :: [[a]] -> [[a]]
allDiagonals xss = (diagonals xss) ++ (diagonals (rotate90 xss))
My research on this problem
Similar question here at StackOverflow
Python this question is about the same problem in Python, but Python and Haskell are very different, so the answers to that question are not relevant to me.
Only one This question and answer are in Haskell, but are only about the central diagonal.
Hoogle
Searching for [[a]] -> [[a]]
gave me no interesting result.
Independent thinking
I think the the indexing follows a kind of count in base x where x is the number of dimensions in the matrix, look at:
1 | 2
- - -
3 | 4
The diagonals are [ [1], [3, 2], [4] ]
1
can be found atmatrix[0][0]
3
can be found atmatrix[1][0]
2
can be found atmatrix[0][1]
1
can be found atmatrix[1][1]
That is similar to counting in base 2 up to 3, that is the matrix size minus one. But this is far too vague to be translated into code.