I'm interested in comparing estimates from different quantiles (same outcome, same covariates) using anova.rqlist
function called by anova
in the environment of the quantreg
package in R. However the math in the function is beyond my rudimentary expertise. Lets say i fit 3 models at different quantiles;
library(quantreg)
data(Mammals) # data in quantreg to be used as a useful example
fit1 <- rq(weight ~ speed + hoppers + specials, tau = .25, data = Mammals)
fit2 <- rq(weight ~ speed + hoppers + specials, tau = .5, data = Mammals)
fit3 <- rq(weight ~ speed + hoppers + specials, tau = .75, data = Mammals)
Then i compare them using;
anova(fit1, fit2, fit3, test="Wald", joint=FALSE)
My question is which is of these models is being used as the basis of the comparison?
My understanding of the Wald test (wiki entry)
where θ^ is the estimate of the parameter(s) of interest θ that is compared with the proposed value θ0.
So my question is what is the anova
function in quantreg
choosing as the θ0?
Based on the pvalue returned from the anova
my best guess is that it is choosing the lowest quantile specified (ie tau=0.25
). Is there a way to specify the median (tau = 0.5
) or better yet the mean estimate from obtained using lm(y ~ x1 + x2 + x3, data)
?
anova(fit1, fit2, fit3, joint=FALSE)
actually produces
Quantile Regression Analysis of Deviance Table
Model: weight ~ speed + hoppers + specials
Tests of Equality of Distinct Slopes: tau in { 0.25 0.5 0.75 }
Df Resid Df F value Pr(>F)
speed 2 319 1.0379 0.35539
hoppersTRUE 2 319 4.4161 0.01283 *
specialsTRUE 2 319 1.7290 0.17911
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
while
anova(fit3, fit1, fit2, joint=FALSE)
produces the exact same result
Quantile Regression Analysis of Deviance Table
Model: weight ~ speed + hoppers + specials
Tests of Equality of Distinct Slopes: tau in { 0.5 0.25 0.75 }
Df Resid Df F value Pr(>F)
speed 2 319 1.0379 0.35539
hoppersTRUE 2 319 4.4161 0.01283 *
specialsTRUE 2 319 1.7290 0.17911
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
The order of the models is clearly being changed in the anova, but how is it that the F value and Pr(>F) are identical in both tests?