I'm developing a tool which receives motion sensor data and sends it to a machine learning algorithm, which ultimately will deduce different types of movement.
I read the Motion sensor guide and it seems like there is some redundancy in the data you can get from the sensors. For example: the accelrometer data contains gravity data and the linear acceleration data shows acceleration without acceleration due to gravity.
So my question is: do i really need all the sensors to get all forms of motion or can I give up some of them?
EDIT: (clarifying the question)
I want to collect the minimal data that will allow me to deduce the same things. What I'm looking for is user behavior: the angle which the user holds his phone, the way the user moves while using his phone, etc..
The answer I'm looking for should include the sets of sensors that have high correlation within them, such that only some of the sensors in this set are required to deduce the same type of motion\movement\rotation\acceleration\etc..