Having trouble figuring out a nice way to get this task done.
Say i have a list of triangular numbers up to 1000 -> [0,1,3,6,10,15,..]etc
Given a number, I want to return the consecutive elements in that list that sum to that number.
i.e.
64 --> [15,21,28]
225 --> [105,120]
371 --> [36, 45, 55, 66, 78, 91]
if there's no consecutive numbers that add up to it, return an empty list.
882 --> [ ]
Note that the length of consecutive elements can be any number - 3,2,6 in the examples above.
The brute force way would iteratively check every possible consecutive pairing possibility for each element. (start at 0, look at the sum of [0,1], look at the sum of [0,1,3], etc until the sum is greater than the target number). But that's probably O(n*2) or maybe worse. Any way to do it better?
UPDATE: Ok, so a friend of mine figured out a solution that works at O(n) (I think) and is pretty intuitively easy to follow. This might be similar (or the same) to Gabriel's answer, but it was just difficult for me to follow and I like that this solution is understandable even from a basic perspective. this is an interesting question, so I'll share her answer:
def findConsec(input1 = 7735):
list1 = range(1, 1001)
newlist = [reduce(lambda x,y: x+y,list1[0:i]) for i in list1]
curr = 0
end = 2
num = sum(newlist[curr:end])
while num != input1:
if num < input1:
num += newlist[end]
end += 1
elif num > input1:
num -= newlist[curr]
curr += 1
if curr == end:
return []
if num == input1:
return newlist[curr:end]