I was hoping for a more elegant solution to just iterating over the list of zero crossings, but it seems that is the only solution.
I settled on:
def zero_crossing_avg(data):
output = []
running_total = data[0]
count = 1
for i in range(1,data.size):
val = data[i]
if val - data[i-1] < TOL:
running_total += val
count += 1
else:
output.append(round(running_total/count))
running_total = val
count = 1
return output
with example code of it in-use:
#!/usr/bin/env python
import numpy as np
from matplotlib import pyplot as plt
dt = 5e-6
TOL = 50
class DCfilt():
def __init__(self,dt,freq):
self.alpha = dt/(dt + 1/(2*np.pi*freq))
self.y = [0,0]
def step(self,x):
y = self.y[-1] + self.alpha*(x - self.y[-1])
self.y[-1] = y
return y
def zero_crossing_avg(data):
output = []
running_total = data[0]
count = 1
for i in range(1,data.size):
val = data[i]
if val - data[i-1] < TOL:
running_total += val
count += 1
else:
output.append(round(running_total/count))
running_total = val
count = 1
return output
t = np.arange(0,2,dt)
print(t.size)
rng = (np.random.random_sample(t.size) - 0.5)*0.1
s = 10*np.sin(2*np.pi*t*10 + np.pi/12)+rng
c = 10*np.cos(2*np.pi*t*10)+rng
filt_s = DCfilt(dt,16000)
filt_s.y[-1] =s[0]
filt_c = DCfilt(dt,1600)
filt_c.y[-1] =c[0]
# filter the RAW data first
for i in range(s.size):
s[i] = filt_s.step(s[i])
c[i] = filt_c.step(c[i])
# determine the zero crossings
s_z = np.where(np.diff(np.sign(s)))[0]
c_z = np.where(np.diff(np.sign(c)))[0]
sin_zc = zero_crossing_avg( np.where(np.diff(np.sign(s)))[0] )
cos_zc = zero_crossing_avg( np.where(np.diff(np.sign(c)))[0] )
HALF_PERIOD = (sin_zc[1] - sin_zc[0])
for i in range([len(sin_zc),len(cos_zc)][len(sin_zc) > len(cos_zc)]):
delta = abs(cos_zc[i]-sin_zc[i])
print(90 - (delta/HALF_PERIOD)*180)
plt.hold(True)
plt.grid(True)
plt.plot(s)
plt.plot(c)
plt.show()
This works well enough.