I am trying to solve a simple example with the dopri5
integrator in scipy.integrate.ode
. As the documentation states
This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and dense output).
this should work. So here is my example:
import numpy as np
from scipy.integrate import ode
import matplotlib.pyplot as plt
def MassSpring_with_force(t, state):
""" Simple 1DOF dynamics model: m ddx(t) + k x(t) = f(t)"""
# unpack the state vector
x = state[0]
xd = state[1]
# these are our constants
k = 2.5 # Newtons per metre
m = 1.5 # Kilograms
# force
f = force(t)
# compute acceleration xdd
xdd = ( ( -k*x + f) / m )
# return the two state derivatives
return [xd, xdd]
def force(t):
""" Excitation force """
f0 = 1 # force amplitude [N]
freq = 20 # frequency[Hz]
omega = 2 * np.pi *freq # angular frequency [rad/s]
return f0 * np.sin(omega*t)
# Time range
t_start = 0
t_final = 1
# Main program
state_ode_f = ode(MassSpring_with_force)
state_ode_f.set_integrator('dopri5', rtol=1e-6, nsteps=500,
first_step=1e-6, max_step=1e-3)
state2 = [0.0, 0.0] # initial conditions
state_ode_f.set_initial_value(state2, 0)
sol = np.array([[t_start, state2[0], state2[1]]], dtype=float)
print("Time\t\t Timestep\t dx\t\t ddx\t\t state_ode_f.successful()")
while state_ode_f.t < (t_final):
state_ode_f.integrate(t_final, step=True)
sol = np.append(sol, [[state_ode_f.t, state_ode_f.y[0], state_ode_f.y[1]]], axis=0)
print("{0:0.8f}\t {1:0.4e} \t{2:10.3e}\t {3:0.3e}\t {4}".format(
state_ode_f.t, sol[-1, 0]- sol[-2, 0], state_ode_f.y[0], state_ode_f.y[1], state_ode_f.successful()))
The result I get is:
Time Timestep dx ddx state_ode_f.successful()
0.49763822 4.9764e-01 2.475e-03 -8.258e-04 False
0.99863822 5.0100e-01 3.955e-03 -3.754e-03 False
1.00000000 1.3618e-03 3.950e-03 -3.840e-03 False
with a warning:
c:\python34\lib\site-packages\scipy\integrate_ode.py:1018: UserWarning: dopri5: larger nmax is needed self.messages.get(idid, 'Unexpected idid=%s' % idid))
The result is incorect. If I run the same code with vode
integrator, I get the expected result.
Edit
A similar issue is described here: Using adaptive step sizes with scipy.integrate.ode
The suggested solution recommends setting nsteps=1
, which solves the ODE correctly and with step-size control. However the integrator returns state_ode_f.successful()
as False
.