Two different lists having radii of upper hemisphere and lower hemisphere is provided. The first list consists of N upper hemispheres indexed 1 to N and the second has M lower hemispheres indexed 1 to M. A sphere of radius of R can be made taking one upper half of the radius R and one lower half of the radius R. Also, you can put a sphere into a bigger one and create a sequence of nested concentric spheres. But you can't put two or more spheres directly into another one.
If there is a sequence of (D+1) nested spheres, we can call this sequence as a D-sequence.
Find out how many different X-sequence are possible (1 <= X <= C). An X sequence is different from another if the index of any of the hemisphere used in one X-sequence is different from the other.
INPUT
The first line contains a three integers: N denoting the number of upper sphere halves, M denoting the number of lower sphere halves and C.
The second line contains N space-separated integers denoting the radii of upper hemispheres.
The third line contains M space-separated integers denoting the radii of lower hemispheres.
OUTPUT
Output a single line containing C space-separated integers , the number of ways there are to build i-sequence in modulo 1000000007.
Example
Input
3 4 3
1 2 3
1 1 3 2
Output
5 2 0
I am looking for those elements which are part of both the lists of upper as well as lower hemispheres, so that they can form a sphere and then taking their maximum count by comparing their counts in both radii lists.
And, So, for different C sum of products of counts of C+1 elements yields the answer.
How to calculate the above efficiently or is there any other approach ??