I am trying to perform some speed comparison test Python vs R and struggling with issue - LinearRegression under sklearn with categorical variables.
Code R:
# Start the clock!
ptm <- proc.time()
ptm
test_data = read.csv("clean_hold.out.csv")
# Regression Model
model_liner = lm(test_data$HH_F ~ ., data = test_data)
# Stop the clock
new_ptm <- proc.time() - ptm
Code Python:
import pandas as pd
import time
from sklearn.linear_model import LinearRegression
from sklearn.feature_extraction import DictVectorizer
start = time.time()
test_data = pd.read_csv("./clean_hold.out.csv")
x_train = [col for col in test_data.columns[1:] if col != 'HH_F']
y_train = ['HH_F']
model_linear = LinearRegression(normalize=False)
model_linear.fit(test_data[x_train], test_data[y_train])
but it's not work for me
return X.astype(np.float32 if X.dtype == np.int32 else np.float64) ValueError: could not convert string to float: Bee True
I was tried another approach
test_data = pd.read_csv("./clean_hold.out.csv").to_dict()
v = DictVectorizer(sparse=False)
X = v.fit_transform(test_data)
However, I catched another error:
File "C:\Anaconda32\lib\site-packages\sklearn\feature_extraction\dict_vectorizer.py", line 258, in transform Xa[i, vocab[f]] = dtype(v) TypeError: float() argument must be a string or a number
I don't understand how Python should resolve this issues ...
Example of data: http://screencast.com/t/hYyyu7nU9hQm