I've been reading about Task
s after asking this question and seeing that I completely misunderstood the concept. Answers such as the top answers here and here explain the idea, but I still don't get it.
So I've made this a very specific question: What actually happens on the CPU when a Task is executed?
This is what I've understood after some reading: A Task will share CPU time with the caller (and let's assume the caller is the "UI") so that if it's CPU-intensive - it will slow down the UI. If the Task is not CPU-intensive - it will be running "in the background". Seems clear enough …… until tested. The following code should allow the user to click on the button, and then alternately show "Shown" and "Button". But in reality: the Form is completely busy (-no user input possible) until the "Shown"s are all shown.
public Form1()
{
InitializeComponent();
Shown += Form1_Shown;
}
private async void Form1_Shown(object sender, EventArgs e)
{
await Doit("Shown");
}
private async Task Doit(string s)
{
WebClient client = new WebClient();
for (int i = 0; i < 10; i++)
{
client.DownloadData(uri);//This is here in order to delay the Text writing without much CPU use.
textBox1.Text += s + "\r\n";
this.Update();//textBox1.
}
}
private async void button1_Click(object sender, EventArgs e)
{
await Doit("Button");
}
Can someone please tell me what is actually happening on the CPU when a Task is executed (e.g. "When the CPU is not used by the UI, the Task uses it, except for when… etc.")?