Well, this is bit fiddling at its best. Doing it with an array of bytes makes it more complicated than it would be with larger elements because a single 14 bit quantity can span 3 bytes, where uint16_t or anything bigger would require no more than two. But I'll take you at your word that this is what you want (no pun intended). This code will actually work with the constant set to anything 8 or larger (but not over the size of an int
; for that, additional type casts are needed). Of course the value type must be adjusted if larger than 16.
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#define W 14
uint16_t arr_get(unsigned char* arr, size_t index) {
size_t bit_index = W * index;
size_t byte_index = bit_index / 8;
unsigned bit_in_byte_index = bit_index % 8;
uint16_t result = arr[byte_index] >> bit_in_byte_index;
for (unsigned n_bits = 8 - bit_in_byte_index; n_bits < W; n_bits += 8)
result |= arr[++byte_index] << n_bits;
return result & ~(~0u << W);
}
void arr_set(unsigned char* arr, size_t index, uint16_t value) {
size_t bit_index = W * index;
size_t byte_index = bit_index / 8;
unsigned bit_in_byte_index = bit_index % 8;
arr[byte_index] &= ~(0xff << bit_in_byte_index);
arr[byte_index++] |= value << bit_in_byte_index;
unsigned n_bits = 8 - bit_in_byte_index;
value >>= n_bits;
while (n_bits < W - 8) {
arr[byte_index++] = value;
value >>= 8;
n_bits += 8;
}
arr[byte_index] &= 0xff << (W - n_bits);
arr[byte_index] |= value;
}
int main(void) {
int mod = 1 << W;
int n = 50000;
unsigned x[n];
unsigned char b[2 * n];
for (int tries = 0; tries < 10000; tries++) {
for (int i = 0; i < n; i++) {
x[i] = rand() % mod;
arr_set(b, i, x[i]);
}
for (int i = 0; i < n; i++)
if (arr_get(b, i) != x[i])
printf("Err @%d: %d should be %d\n", i, arr_get(b, i), x[i]);
}
return 0;
}
Faster versions Since you said in comments that performance is an issue: open coding the loops gives a roughly 10% speed improvement on my machine on the little test driver included in the original. This includes random number generation and testing, so perhaps the primitives are 20% faster. I'm confident that 16- or 32-bit array elements would give further improvements because byte access is expensive:
uint16_t arr_get(unsigned char* a, size_t i) {
size_t ib = 14 * i;
size_t iy = ib / 8;
switch (ib % 8) {
case 0:
return (a[iy] | (a[iy+1] << 8)) & 0x3fff;
case 2:
return ((a[iy] >> 2) | (a[iy+1] << 6)) & 0x3fff;
case 4:
return ((a[iy] >> 4) | (a[iy+1] << 4) | (a[iy+2] << 12)) & 0x3fff;
}
return ((a[iy] >> 6) | (a[iy+1] << 2) | (a[iy+2] << 10)) & 0x3fff;
}
#define M(IB) (~0u << (IB))
#define SETLO(IY, IB, V) a[IY] = (a[IY] & M(IB)) | ((V) >> (14 - (IB)))
#define SETHI(IY, IB, V) a[IY] = (a[IY] & ~M(IB)) | ((V) << (IB))
void arr_set(unsigned char* a, size_t i, uint16_t val) {
size_t ib = 14 * i;
size_t iy = ib / 8;
switch (ib % 8) {
case 0:
a[iy] = val;
SETLO(iy+1, 6, val);
return;
case 2:
SETHI(iy, 2, val);
a[iy+1] = val >> 6;
return;
case 4:
SETHI(iy, 4, val);
a[iy+1] = val >> 4;
SETLO(iy+2, 2, val);
return;
}
SETHI(iy, 6, val);
a[iy+1] = val >> 2;
SETLO(iy+2, 4, val);
}
Another variation
This is quite a bit faster yet on my machine, about 20% better than above:
uint16_t arr_get2(unsigned char* a, size_t i) {
size_t ib = i * 14;
size_t iy = ib / 8;
unsigned buf = a[iy] | (a[iy+1] << 8) | (a[iy+2] << 16);
return (buf >> (ib % 8)) & 0x3fff;
}
void arr_set2(unsigned char* a, size_t i, unsigned val) {
size_t ib = i * 14;
size_t iy = ib / 8;
unsigned buf = a[iy] | (a[iy+1] << 8) | (a[iy+2] << 16);
unsigned io = ib % 8;
buf = (buf & ~(0x3fff << io)) | (val << io);
a[iy] = buf;
a[iy+1] = buf >> 8;
a[iy+2] = buf >> 16;
}
Note that for this code to be safe you should allocate one extra byte at the end of the packed array. It always reads and writes 3 bytes even when the desired 14 bits are in the first 2.
One more variation Finally, this runs just a bit slower than the one above (again on my machine; YMMV), but you don't need the extra byte. It uses one comparison per operation:
uint16_t arr_get2(unsigned char* a, size_t i) {
size_t ib = i * 14;
size_t iy = ib / 8;
unsigned io = ib % 8;
unsigned buf = ib % 8 <= 2
? a[iy] | (a[iy+1] << 8)
: a[iy] | (a[iy+1] << 8) | (a[iy+2] << 16);
return (buf >> io) & 0x3fff;
}
void arr_set2(unsigned char* a, size_t i, unsigned val) {
size_t ib = i * 14;
size_t iy = ib / 8;
unsigned io = ib % 8;
if (io <= 2) {
unsigned buf = a[iy] | (a[iy+1] << 8);
buf = (buf & ~(0x3fff << io)) | (val << io);
a[iy] = buf;
a[iy+1] = buf >> 8;
} else {
unsigned buf = a[iy] | (a[iy+1] << 8) | (a[iy+2] << 16);
buf = (buf & ~(0x3fff << io)) | (val << io);
a[iy] = buf;
a[iy+1] = buf >> 8;
a[iy+2] = buf >> 16;
}
}