I am trying to improve a function to build a network based on the score calculated from some node attributes. The function tries to find the best subnetwork from a graph maximizing the product of node's attributes.
The function starts in a random node and start searching in the first neighbor, if there are some neighbors whose node's score suffice a threshold, the neighbour/s is added to the first node and the process continues until no more are added (the addition of the neighbour does not produce the desired increment in the score). If there is no node in the first neighbours that yields the increment of the score, then the function looks to the second degree neighbours. In this situation, it is very likely that there are several paths to connect the node (2nd degree neighbour), in this specific case, the chosen path will be the shortest with the highest weight (one of the nodes attribute).
I could do some paralelization of the code, although I don't know how to implement it in this type of function.
The function is the following:
build_network <-
function (G, seed, d= 2){
net <- G
d <- d
score.fun<-function(g){
Za <- sum(V(g)$weight*V(g)$RWRNodeweight)/sqrt(sum(V(g)$RWRNodeweight^2))
k <- vcount(g)
tmp <- genesets.length.null.stat[[as.character(k)]] # genesets.length.null.stat is a list with the median of Za and sd of Za calculated for 1000 replicates of networks of size k
Sa <- (Za-tmp[1])/tmp[2]
}
best.fun<-function(in.nodes,out.nodes) {
score<-(-Inf); best<-character()
for(node in out.nodes){
subG.update<-induced.subgraph(net, c(in.nodes,node))
if( score.fun(subG.update) > score ){
score<-score.fun(subG.update)
best<-node
}
}
list("node"=best,"score"=score)
}
subG <- induced.subgraph(net, seed)
if (!is.connected(subG)) { #the seed must be connected
stop("Input seeds are disjoint")
}
while (TRUE) {
in.nodes <- V(subG)$name
node_num <- vcount(subG)
subsum <- score.fun(subG)
#subx <- V(subG)$name
for (rad in 1:d) {
tmp.neigh <- unlist(neighborhood(net, order = rad, nodes = V(subG)$name))
pot.nodes <- V(net)[tmp.neigh]$name
out.nodes <- setdiff(pot.nodes, in.nodes)
if (length(out.nodes) == 0) break
best_node<-best.fun(in.nodes, out.nodes)
new_score<-best_node$score
best_node<-best_node$node
if (new_score > subsum + 0.01) {
tmp <- unlist(lapply(best_node, function(x) node2treePath(net,V(subG)$name, x))) # node2treePath is a function to retrieve the shortest path with the highest node weights
in.nodes <- c(tmp, V(subG)$name)
subG <- induced.subgraph(net, in.nodes)
break
}
}
if (node_num == vcount(subG)) break
}
return(subG)
}
I am trying to apply this function to a graph of ~10,000 nodes. Here will be an approximation of the code for running the function
### generate some example data
library(igraph)
my_graph <- erdos.renyi.game(10000, 0.0003)
V(my_graph)$name <- 1:vcount(my_graph)
V(my_graph)$weight <- rnorm(10000)
V(my_graph)$RWRNodeweight <- runif(10000, min=0, max=0.05)
### Run the function
sublist = list()
for (node in V(G)$name) {
subnet <- build_network(G, node, d)
sublist[[node]] <- subnet }
EDIT: here is the dput
of head(genesets.length.null.stat)
structure(list(`1` = c(1.01397367504035, 1.18858228819048), `2` = c(1.61970348041337, 1.30189433386605), `3` = c(2.11767222957028, 1.36222065695878), `4` = c(2.47710421934929, 1.36968129959296), `5` = c(2.776011866622, 1.36318885187196), `6` = c(3.16885126246671, 1.42577861995897)), .Names = c("1", "2", "3", "4", "5", "6"))
Here is the node2treePath
function:
node2treePath <- function (G, Tnodes, node){
tmp.path <- get.all.shortest.paths(G, node, Tnodes)$res
tmp.l <- unlist(lapply(tmp.path, length))
index <- which(tmp.l == min(tmp.l))
tmp.path = tmp.path[index]
tmp.sum <- unlist(lapply(tmp.path, function(x)return(sum(V(G)[x]$weight))))
index <- which(tmp.sum == max(tmp.sum))
selected.path = tmp.path[index]
collect <- unlist(lapply(selected.path, function(x)return(V(G)[x]$name)))
return(collect)
}