I know this is old, but I've found there is no perfect way to achieve this, more specifically this:
trying to find a less error prone way to guard code in a "do (anything) once..."
I'll add to this "while respecting a happens before behavior." which is required for instantiating singletons in your case.
IMO The best way to achieve this is by means of a synchronized function:
public<T> T transaction(Function<NonSyncObject, T> transaction) {
synchronized (lock) {
return transaction.apply(nonSyncObject);
}
}
This allows to preform atomic "transactions" on the given object.
Other options are double-check spin-locks:
for (;;) {
T t = atomicT.get();
T newT = new T();
if (atomicT.compareAndSet(t, newT)) return;
}
On this one new T();
will get executed repeatedly until the value is set successfully, so it is not really a "do something once".
This would only work on copy on write transactions, and could help on "instantiating objects once" (which in reality is instantiating many but at the end is referencing the same) by tweaking the code.
The final option is a worst performant version of the first one, but this one is a true happens before AND ONCE (as opposed to the double-check spin-lock):
public void doSomething(Runnable r) {
while (!atomicBoolean.compareAndSet(false, true)) {}
// Do some heavy stuff ONCE
r.run();
atomicBoolean.set(false);
}
The reason why the first one is the better option is that it is doing what this one does, but in a more optimized way.
As a side note, in my projects I've actually used the code below (similar to @the8472's answer), that at the time I thought safe, and it may be:
public T get() {
T res = ref.get();
if (res == null) {
res = builder.get();
if (ref.compareAndSet(null, res))
return res;
else
return ref.get();
} else {
return res;
}
}
The thing about this code is that, as the copy on write loop, this one generates multiple instances, one for each contending thread, but only one is cached, the first one, all the other constructions eventually get GC'd.
Looking at the putIfAbsent method I see the benefit is the skipping of 17 lines of code and then a synchronized body:
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
And then the synchronized body itself is another 34 lines:
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
The pro(s) of using a ConcurrentHashMap is that it will undoubtedly work.