The commenters are correct in that there are better ways to set up a reproducible example. In addition, your answer could be more specific in what you are trying to accomplish as an output. (I could not get your code to execute without error.)
However: You asked for a simpler, better approach. Here is what I think is both. It uses the quanteda text package and exploits the groups
feature when creating the document-feature matrix. Then it performs some rankings on the "dfm" to get what you need in terms of daily term rankings.
Note that this is based on my having loaded your linked data using read.delim("sampledf.tsv", stringsAsFactors = FALSE)
.
require(quanteda)
# create a corpus with a date document variable
myCorpus <- corpus(sampledf$content_strip,
docvars = data.frame(date = as.Date(sampledf$postedDate_fix, "%M/%d/%Y")))
# construct a dfm, group on date, and remove stopwords plus the term "game"
myDfm <- dfm(myCorpus, groups = "date", ignoredFeatures = c("game", stopwords("english")))
## Creating a dfm from a corpus ...
## ... grouping texts by variable: date
## ... lowercasing
## ... tokenizing
## ... indexing documents: 20 documents
## ... indexing features: 198 feature types
## ... removed 47 features, from 175 supplied (glob) feature types
## ... created a 20 x 151 sparse dfm
## ... complete.
## Elapsed time: 0.009 seconds.
myDfm <- sort(myDfm) # not required, just for presentation
# remove a really nasty long term
myDfm <- removeFeatures(myDfm, "^a{10}", valuetype = "regex")
## removed 1 feature, from 1 supplied (regex) feature types
# make a data.frame of the daily ranks of each feature
featureRanksByDate <- as.data.frame(t(apply(myDfm, 1, order, decreasing = TRUE)))
names(featureRanksByDate) <- features(myDfm)
featureRanksByDate[, 1:10]
## â great nice play go will can get ever first
## 2013-10-02 1 18 19 20 21 22 23 24 25 26
## 2013-10-04 3 1 2 4 5 6 7 8 9 10
## 2013-10-05 3 9 28 29 1 2 4 5 6 7
## 2013-10-06 7 4 8 10 11 30 31 32 33 34
## 2013-10-07 5 1 2 3 4 6 7 8 9 10
## 2013-10-09 12 42 43 1 2 3 4 5 6 7
## 2013-10-13 1 14 6 9 10 13 44 45 46 47
## 2013-10-16 2 3 84 85 1 4 5 6 7 8
## 2013-10-18 15 1 2 3 4 5 6 7 8 9
## 2013-10-19 3 86 1 2 4 5 6 7 8 9
## 2013-10-22 2 87 88 89 90 91 92 93 94 95
## 2013-10-23 13 98 99 100 101 102 103 104 105 106
## 2013-10-25 4 6 5 12 16 109 110 111 112 113
## 2013-10-27 8 4 6 15 17 124 125 126 127 128
## 2013-10-30 11 1 2 3 4 5 6 7 8 9
## 2014-10-01 7 16 139 1 2 3 4 5 6 8
## 2014-10-02 140 1 2 3 4 5 6 7 8 9
## 2014-10-03 141 142 143 1 2 3 4 5 6 7
## 2014-10-05 144 145 146 147 148 1 2 3 4 5
## 2014-10-06 17 149 150 1 2 3 4 5 6 7
# top n features by day
n <- 10
as.data.frame(apply(featureRanksByDate, 1, function(x) {
todaysTopFeatures <- names(featureRanksByDate)
names(todaysTopFeatures) <- x
todaysTopFeatures[as.character(1:n)]
}), row.names = 1:n)
## 2013-10-02 2013-10-04 2013-10-05 2013-10-06 2013-10-07 2013-10-09 2013-10-13 2013-10-16 2013-10-18 2013-10-19 2013-10-22 2013-10-23
## 1 â great go triple great play â go great nice year year
## 2 win nice will niple nice go created â nice play â give
## 3 year â â backflip play will wasnt great play â give good
## 4 give play can great go can money will go go good hard
## 5 good go get scope â get prizes can will will hard time
## 6 hard will ever ball will ever nice get can can time triple
## 7 time can first â can first piece ever get get triple niple
## 8 triple get fun nice get fun dead first ever ever niple backflip
## 9 niple ever great testical ever win play fun first first backflip scope
## 10 backflip first win play first year go win fun fun scope ball
## 2013-10-25 2013-10-27 2013-10-30 2014-10-01 2014-10-02 2014-10-03 2014-10-05 2014-10-06
## 1 scope scope great play great play will play
## 3 testical testical play will play will get will
## 2 ball ball nice go nice go can go
## 4 â great go can go can ever can
## 5 nice shot will get will get first get
## 6 great nice can ever can ever fun ever
## 7 shot head get â get first win first
## 8 head â ever first ever fun year fun
## 9 dancing dancing first fun first win give win
## 10 cow cow fun win fun year good year
BTW interesting spellings of niple and testical.