0

If I understand the documentation correctly, we should be able to use ldexp to recover a floating point number decomposed into a signed mantissa and an exponent by frexp. I have been unable to achieve this. Consider the following code:

#include <cmath>
#include <iostream>
#include <limits>

template <typename T>
void float_info() {
    std::cout << "max=" << std::numeric_limits<T>::max()          <<
        ", max_exp="    << std::numeric_limits<T>::max_exponent   <<
        ", max_10_exp=" << std::numeric_limits<T>::max_exponent10 <<
        ", min="        << std::numeric_limits<T>::min()          <<
        ", min_exp="    << std::numeric_limits<T>::min_exponent   <<
        ", min_10_exp=" << std::numeric_limits<T>::min_exponent10 <<
        ", dig="        << std::numeric_limits<T>::digits10       <<
        ", mant_dig="   << std::numeric_limits<T>::digits         <<
        ", epsilon="    << std::numeric_limits<T>::epsilon()      <<
        ", radix="      << std::numeric_limits<T>::radix          <<
        ", rounds="     << std::numeric_limits<T>::round_style    << std::endl;
}

template <typename T>
void compare(T a, T b) {
    std::cout << a << " " << b << " (" <<
        (a != b ? "un" : "") << "equal)" << std::endl;
}

template<typename T>
void test_ldexp() {
    float_info<T>();

    T x = 1 + std::numeric_limits<T>::epsilon();
    T y = ldexp(x, 0);
    int exponent;
    T mantissa = frexp(x, &exponent);
    T z = ldexp(mantissa, exponent);

    compare(x, y);
    compare(x, z);

    std::cout << std::endl;
}

int main() {
    std::cout.precision(25);
    test_ldexp<float>();
    test_ldexp<double>();
    test_ldexp<long double>();
}

When compiled with g++ (version 4.8.4) on Ubuntu 14.04.3 LTS, the output is:

max=3.402823466385288598117042e+38, max_exp=128, max_10_exp=38,
min=1.175494350822287507968737e-38, min_exp=-125, min_10_exp=-37, dig=6,
mant_dig=24, epsilon=1.1920928955078125e-07, radix=2, rounds=1
1.00000011920928955078125 1.00000011920928955078125 (equal)
1.00000011920928955078125 1.00000011920928955078125 (equal)

max=1.797693134862315708145274e+308, max_exp=1024, max_10_exp=308,
min=2.225073858507201383090233e-308, min_exp=-1021, min_10_exp=-307, dig=15,
mant_dig=53, epsilon=2.220446049250313080847263e-16, radix=2, rounds=1
1.000000000000000222044605 1.000000000000000222044605 (equal)
1.000000000000000222044605 1.000000000000000222044605 (equal)

max=1.189731495357231765021264e+4932, max_exp=16384, max_10_exp=4932,
min=3.362103143112093506262678e-4932, min_exp=-16381, min_10_exp=-4931, dig=18,
mant_dig=64, epsilon=1.084202172485504434007453e-19, radix=2, rounds=1
1.00000000000000000010842 1 (unequal)
1.00000000000000000010842 1 (unequal)

When using long doubles we appear to be losing something by decomposing our x with frexpr. I can achieve the behavior I expect if I run the following script with python3 (version 3.4.3).

import math
import sys

def compare(a, b):
    print('{a} {b} ({pre}equal)'.format(a=a, b=b,
        pre='un' if a != b else ''))

x = 1 + sys.float_info.epsilon
mantissa, exponent = math.frexp(x)

print(sys.float_info)
compare(x, math.ldexp(x, 0))
compare(x, math.ldexp(mantissa, exponent))

The output is:

sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308,
min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15,
mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)
1.0000000000000002 1.0000000000000002 (equal)
1.0000000000000002 1.0000000000000002 (equal)

Note that this is only using doubles.

I tried to read the cmath header file to understand how frexpr and ldexpr are implemented, but I couldn't make sense of it. What is going on?

Ben Whitney
  • 204
  • 1
  • 9

1 Answers1

1

Modify your C++ program by including the typeinfo header and inserting the following lines right before the calls to compare in your test_ldexp function.

std::cout << "types:" << std::endl;
std::cout << "  x         : " << typeid(x).name() << std::endl;
std::cout << "  mantissa  : " << typeid(frexp(x, &exponent)).name()
          << std::endl;
std::cout << "  ldexp(...): " << typeid(ldexp(x, 0)).name() << std::endl;
std::cout << "  ldexp(...): " << typeid(ldexp(mantissa, exponent)).name()
          << std::endl;

The output is now:

max=3.402823466385288598117042e+38, max_exp=128, max_10_exp=38,
min=1.175494350822287507968737e-38, min_exp=-125, min_10_exp=-37, dig=6,
mant_dig=24, epsilon=1.1920928955078125e-07, radix=2, rounds=1
types:
  x         : f
  mantissa  : d
  ldexp(...): d
  ldexp(...): d
1.00000011920928955078125 1.00000011920928955078125 (equal)
1.00000011920928955078125 1.00000011920928955078125 (equal)

max=1.797693134862315708145274e+308, max_exp=1024, max_10_exp=308,
min=2.225073858507201383090233e-308, min_exp=-1021, min_10_exp=-307, dig=15,
mant_dig=53, epsilon=2.220446049250313080847263e-16, radix=2, rounds=1
types:
  x         : d
  mantissa  : d
  ldexp(...): d
  ldexp(...): d
1.000000000000000222044605 1.000000000000000222044605 (equal)
1.000000000000000222044605 1.000000000000000222044605 (equal)

max=1.189731495357231765021264e+4932, max_exp=16384, max_10_exp=4932,
min=3.362103143112093506262678e-4932, min_exp=-16381, min_10_exp=-4931, dig=18,
mant_dig=64, epsilon=1.084202172485504434007453e-19, radix=2, rounds=1
types:
  x         : e
  mantissa  : d
  ldexp(...): d
  ldexp(...): d
1.00000000000000000010842 1 (unequal)
1.00000000000000000010842 1 (unequal)

frexpr and ldexpr are returning doubles no matter what type you put in! It appears that you are using the functions defined in math.h (see here and here) instead those defined in cmath. Replace your calls to frexpr and ldexpr with calls to std::frexpr and std::ldexpr and your code will work as you expect.

Ben Whitney
  • 204
  • 1
  • 9