This question shows misconceptions on at least two topics.
The first is virtual address spaces and memory protection, as already addressed by RobertL in his answer. On a modern operating system, you just can't access memory belonging to another process (even if you knew the physical address, which you don't because all user space processes work on addresses in their private virtual address space). The result of trying to access something not mapped into your address space will be a segmentation fault. Read more on Wikipedia.
The second is the scope of the C standard. It doesn't know about processes. C is defined in terms of an abstract machine executing your program (and only this program). Scopes and lifetimes of variables are defined and the respective maximum is the global scope and a static storage duration. So yes, your variable will continue to live as long as your program runs, but it's scope will be this program.
When you understand that, you see: even on a platform using a single global address space and no memory protection at all, you could never access the variable of another program in terms of the C standard. You could probably pass a pointer value somehow to your other program and use that, maybe it would work, but it would be undefined behavior.
That's why operating systems provide means for inter process communication like shared memory (which comes close to what you seem to want) and pipes.