In the optimization guide of Beignet, an open source implementation of OpenCL targeting Intel GPUs
Work group Size should be larger than 16 and be multiple of 16.
As two possible SIMD lanes on Gen are 8 or 16. To not waste SIMD lanes, we need to follow this rule.
Also mentioned in the Compute Architecture of Intel Processor Graphics Gen7.5:
For Gen7.5 based products, each EU has seven threads for a total of 28 Kbytes of general purpose register file (GRF).
...
On Gen7.5 compute architecture, most SPMD programming models employ this style code generation and EU processor execution. Effectively, each SPMD kernel instance appears to execute serially and independently within its own SIMD lane.
In actuality, each thread executes a SIMD-Width number of kernel instances >concurrently. Thus for a SIMD-16 compile of a compute kernel, it is possible for SIMD-16 x 7 threads = 112 kernel instances to be executing concurrently on a single EU. Similarly, for SIMD-32 x 7 threads = 224 kernel instances executing concurrently on a single EU.
If I understand it correctly, using the SIMD-16 x 7 threads = 112 kernel instances
as a example, in order to run 224 threads on one EU, the work group size need to be 16. Then the OpenCL compiler will fold 16 kernel instances into a 16 lane SIMD thread, and do this 7 times on 7 work groups, and run them on a single EU?
Question 1: am I correct until here?
However OpenCL spec also provide vector data types. So it's feasible to make full use of the SIMD-16 computing resources in a EU by conventional SIMD programming(as in NEON and SSE).
Question 2: If this is the case, using vector-16 data type already makes explicit use of the SIMD-16 resources, hence removes the at-least-16-item-per-work-group restrictions. Is this the case?
Question 3: If all above are true, then how does the two approach compare with each other: 1) 112 threads fold into 7 SIMD-16 threads by OpenCL compiler; 2) 7 native threads coded to explicitly use vector-16 data types and SIMD-16 operations?