You've probably been bitten by combination of optimization and excess x87 FPU precision resulting in the same bit of floating-point code in your source code being duplicated with different assembly code implementations with different rounding behaviour.
The problem with x87 FPU math
The basic problem is that while x87 FPU the supports 32-bit, 64-bit and 80-bit floating-point value, it only has 80-bit registers and the precision of operations is determined by the state of the bits in the floating point control word, not the instruction used. Changing the rounding bits is expensive, so most compilers don't, and so all floating point operations end being be performed at the same precision regardless of the data types involved.
So if the compiler sets the FPU to use 80-bit rounding and you add three 64-bit floating point variables, the code generated will often add the first two variables keeping the unrounded result in a 80-bit FPU register. It would then add the third 64-bit variable to 80-bit value in the register resulting in another unrounded 80-bit value in a FPU register. This can result in a different value being calculated than if the result was rounded to 64-bit precision after each step.
If that resulting value is then stored in a 64-bit floating-point variable then the compiler might write it to memory, rounding it to 64 bits at this point. But if the value is used in later floating point calculations then the compiler might keep it in a register instead. This means what rounding occurs at this point depends on the optimizations the compiler performs. The more its able to keep values in a 80-bit FPU register for speed, the more the result will differ from what you'd get if all floating point operation were rounded according to the size of actual floating point types used in the code.
Why SSE floating-point math is better
With 64-bit code the x87 FPU isn't normally used, instead equivalent scalar SSE instructions are used. With these instructions the precision of the operation used is determined by the instruction used. So with the adding three numbers example, the compiler would emit instructions that added the numbers using 64-bit precision. It doesn't matter if the result gets stored in memory or stays in register, the value remains the same, so optimization doesn't affect the result.
How optimization can turn deterministic FP code into non-deterministic FP code
So far this would explain why you'd get a different result with 32-bit code and 64-bit code, but it doesn't explain why you can get a different result with the same 32-bit code. The problem here is that optimizations can change the your code in surprising ways. One thing the compiler can do is duplicate code for various reasons, and this can cause the same floating point code being executed in different code paths with different optimizations applied.
Since optimization can affect floating point results this can mean the different code paths can give different results even though there's only one code path in the source code. If the code path chosen at run time is non-deterministic then this can cause non-deterministic results even when the in the source code the result isn't dependent on any non-deterministic factor.
An example
So for example, consider this loop. It performs a long running calculation, so every few seconds it prints a message letting the user know how many iterations have been completed so far. At the end of the loop there's simple summation performed using floating-point arithmetic. While there's non-deterministic factor in the loop, the floating-point operation isn't dependent on it. It's always performed regardless of whether progress updated is printed or not.
while ... do
begin
...
if TimerProgress() then
begin
PrintProgress(count);
count := 0
end
else
count := count + 1;
sum := sum + value
end
As optimization the compiler might move the last summing statement into the end of both blocks of the if statement. This lets both blocks finish by jumping back to the start of the loop, saving a jump instruction. Otherwise one of the blocks has to end with a jump to the summing statement.
This transforms the code into this:
while ... do
begin
...
if TimerProgress() then
begin
PrintProgress(count);
count := 0;
sum := sum + value
end
else
begin
count := count + 1;
sum := sum + value
end
end
This can result in the two summations being optimized differently. It may be in one code path the variable sum
can be kept in a register, but in the other path its forced out in to memory. If x87 floating point instructions are used here this can cause sum
to be rounded differently depending on a non-deterministic factor: whether or not its time to print the progress update.
Possible solutions
Whatever the source of your problem, clearing the FPU state isn't going to solve it. The fact that the 64-bit version works, provides an possible solution, using SSE math instead x87 math. I don't know if Delphi supports this, but it's common feature of C compilers. It's very hard and expensive to make x87 based floating-point math conforming to the C standard, so many C compilers support using SSE math instead.
Unfortunately, a quick search of the Internet suggests the Delphi compiler doesn't have option for using SSE floating-point math in 32-bit code. In that case your options would be more limited. You can try disabling optimization, that should prevent the compiler from creating differently optimized versions of the same code. You could also try to changing the rounding precision in the x87 floating-point control word. By default it uses 80-bit precision, but all your floating point variables are 64-bit then changing the FPU to use 64-bit precision should significantly reduce the effect optimization has on rounding.
To do the later you can probably use the Set8087CW procedure MBo mentioned, or maybe System.Math.SetPrecisionMode.