I've looked all over google and stack but haven't found an answer to this problem yet. I keep finding results relating to the simplex method or results for finding the smallest arbitrary simplex (i.e. the vertices are not constrained). Neither can I think of an analytical solution.
Given a set of N-dimensional points, M, and an arbitrary N-dimensional point, q, how do I find the smallest N-dimensional simplex, S, that contains q as an interior point if the vertices of S must be in M? I'm sure I could solve it with an optimization, but I'd like an analytical solution if possible. A deterministic algorithm would be ok, as well.
I was originally using a K nearest neighbors approach, but then I realized it's possible that the N+1 nearest neighbors to q won't necessarily create a simplex that contains q.
Thanks in advance for any assistance provided.