I am trying to use CART
to analyse a data set whose each row is a segment, for example
Segment_ID | Attribute_1 | Attribute_2 | Attribute_3 | Attribute_4 | Target
1 2 3 100 3 0.1
2 0 6 150 5 0.3
3 0 3 200 6 0.56
4 1 4 103 4 0.23
Each segment has a certain population from the base data (irrelevant to my final use).
I want to condense, for example in the above case, the 4 segments into 2 big segments, based on the 4 attributes and on the target variable. I am currently dealing with 15k segments and want only 10 segments with each of the final segment based on target and also having a sensible attribute distribution.
Now, pardon my if I am wrong but CHAID on SPSS (if not using autogrow) will generally split the data into 70:30 ratio where it builds the tree on 70% of the data and tests on the remaining 30%. I can't use this approach since I need all my segments in the data to be included. I essentially want to club these segments into a a few big segments as explained before. My question is whether I can use CART (rpart in R) for the same. There is an explicit option 'subset' in the rpart function in R but I am not sure whether not mentioning it will ensure CART utilizing 100% of my data. I am relatively new to R and hence a very basic question.