Perhaps the solution to my problem is obvious for some on with exprience with openmp, but I don't have it. I want to accelerate the following subroutine using openmp:
void Build_ERIS(vector<double> &eris, vector<Atomic_Orbital> &Basis)
{
int basis_size = Basis.size();
int m = basis_size*(basis_size+1)/2;
eris.resize(m*(m+1)/2);
bool compute;
std::fill(eris.begin(), eris.end(), 0);
int i_orbital,j_orbital, k_orbital,l_orbital, i_primitive, j_primitive, k_primitive,l_primitive,ij,kl, ijkl,ijij,klkl;
#pragma omp parallel
{
#pragma omp for ordered
for(i_orbital=0; i_orbital<basis_size; i_orbital++){
for(j_orbital=0; j_orbital<i_orbital+1; j_orbital++){
ij = i_orbital*(i_orbital+1)/2 + j_orbital;
for(k_orbital=0; k_orbital<basis_size; k_orbital++){
for(l_orbital=0; l_orbital<k_orbital+1; l_orbital++){
kl = k_orbital*(k_orbital+1)/2 + l_orbital;
if (ij >= kl) {
ijkl = composite_index(i_orbital,j_orbital,k_orbital,l_orbital);
ijij = composite_index(i_orbital,j_orbital,i_orbital,j_orbital);
klkl = composite_index(k_orbital,l_orbital,k_orbital,l_orbital);
for(i_primitive=0; i_primitive<Basis[i_orbital].contraction.size; i_primitive++)
for(j_primitive=0; j_primitive<Basis[j_orbital].contraction.size; j_primitive++)
for(k_primitive=0; k_primitive<Basis[k_orbital].contraction.size; k_primitive++)
for(l_primitive=0; l_primitive<Basis[l_orbital].contraction.size; l_primitive++)
eris[ijkl] +=
normconst(Basis[i_orbital].contraction.exponent[i_primitive],Basis[i_orbital].angular.l, Basis[i_orbital].angular.m, Basis[i_orbital].angular.n)*
normconst(Basis[j_orbital].contraction.exponent[j_primitive],Basis[j_orbital].angular.l, Basis[j_orbital].angular.m, Basis[j_orbital].angular.n)*
normconst(Basis[k_orbital].contraction.exponent[k_primitive],Basis[k_orbital].angular.l, Basis[k_orbital].angular.m, Basis[k_orbital].angular.n)*
normconst(Basis[l_orbital].contraction.exponent[l_primitive],Basis[l_orbital].angular.l, Basis[l_orbital].angular.m, Basis[l_orbital].angular.n)*
Basis[i_orbital].contraction.coef[i_primitive]*
Basis[j_orbital].contraction.coef[j_primitive]*
Basis[k_orbital].contraction.coef[k_primitive]*
Basis[l_orbital].contraction.coef[l_primitive]*
ERI_int(Basis[i_orbital].contraction.center.x, Basis[i_orbital].contraction.center.y, Basis[i_orbital].contraction.center.z, Basis[i_orbital].contraction.exponent[i_primitive],Basis[i_orbital].angular.l, Basis[i_orbital].angular.m, Basis[i_orbital].angular.n,
Basis[j_orbital].contraction.center.x, Basis[j_orbital].contraction.center.y, Basis[j_orbital].contraction.center.z, Basis[j_orbital].contraction.exponent[j_primitive],Basis[j_orbital].angular.l, Basis[j_orbital].angular.m, Basis[j_orbital].angular.n,
Basis[k_orbital].contraction.center.x, Basis[k_orbital].contraction.center.y, Basis[k_orbital].contraction.center.z, Basis[k_orbital].contraction.exponent[k_primitive],Basis[k_orbital].angular.l, Basis[k_orbital].angular.m, Basis[k_orbital].angular.n,
Basis[l_orbital].contraction.center.x, Basis[l_orbital].contraction.center.y, Basis[l_orbital].contraction.center.z, Basis[l_orbital].contraction.exponent[l_primitive],Basis[l_orbital].angular.l, Basis[l_orbital].angular.m, Basis[l_orbital].angular.n);
/**/
}
}
}
}
}
}
}
My concern is regarding the best way of be sure that after the openmp parallelization, the computation of the reductions in eris[ijkl], still giving the same values that the serial version of the routine? How can I do a loops fusion in a way that is numerically safe?