I'm not sure specifically what you are asking for. Do you mean the binary representation (i.e. 00001000) of a number written into a string or converting the variable to a string (i.e. 8)? I'll assume you mean the first.
The easiest way to do this is to repeatedly test the least significant bit and shift the value to the right (>>
). We can do this in for loop. However you will need to know how many bits you need to read. We can do this with sizeof
.
int i = 15;
for (int b = 0; b < sizeof(i); ++b) {
uint8_t bit_value = (i & 0x1);
i >>= 1;
}
So how do we turn this iteration into a string? We need to construct the string in reverse. We know how many bits are needed, so we can create a string buffer accordingly with an extra byte for NULL termination.
char *buffer = calloc(sizeof(i) + 1, sizeof(char));
What this does is allocates memory that is sizeof(i) + 1
elements long where each element is sizeof(char)
, and then zero's each element. Now lets put the bits into the string.
for (int b = 0; b < sizeof(i); ++b) {
uint8_t bit_value = (i & 0x1);
size_t offset = sizeof(i) - 1 - b;
buffer[offset] = '0' + bit_value;
i >>= 1;
}
So what's happening here? In each pass we're calculating the offset in the buffer that we should be writing a value to, and then we're adding the ASCII value of 0
to bit_value
as we write it into the buffer.
This code is untested and may have some issues, but that is left as an exercise to the reader. If you have any questions, let me know!