I had the same question these days. However, the timing performance is very critical for me. Therefore, I guess the timing comparison of different solutions may be useful for others.
As Divakar mentioned, you can use np.in1d(A, B)
with np.where
, np.nonzero
. Moreover, you can use the np.in1d(A, B)
with np.intersect1d
(based on this page). Also, you can use np.searchsorted
as another useful approach for sorted arrays.
I want to add another simple solution. You can use the comprehension list. It may take longer that the previous ones. However, if you take the advantage of Numba python package, it is much less time-consuming.
In [1]: import numpy as np
In [2]: from numba import njit
In [3]: a = np.array([1,2,3,4,5,6,7,8,9,10])
In [4]: b = np.array([1,7,10])
In [5]: np.where(np.in1d(a, b))[0]
...: array([0, 6, 9])
In [6]: np.nonzero(np.in1d(a, b))[0]
...: array([0, 6, 9])
In [7]: np.searchsorted(a, b)
...: array([0, 6, 9])
In [8]: np.searchsorted(a, np.intersect1d(a, b))
...: array([0, 6, 9])
In [9]: [i for i, x in enumerate(a) if x in b]
...: [0, 6, 9]
In [10]: @njit
...: def func(a, b):
...: return [i for i, x in enumerate(a) if x in b]
In [11]: func(a, b)
...: [0, 6, 9]
Now, let's compare the timing performance of these solutions.
In [12]: %timeit np.where(np.in1d(a, b))[0]
4.26 µs ± 6.9 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [13]: %timeit np.nonzero(np.in1d(a, b))[0]
4.39 µs ± 14.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [14]: %timeit np.searchsorted(a, b)
800 ns ± 6.04 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [15]: %timeit np.searchsorted(a, np.intersect1d(a, b))
8.8 µs ± 73.9 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [16]: %timeit [i for i, x in enumerate(a) if x in b]
15.4 µs ± 18.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [17]: %timeit func(a, b)
336 ns ± 0.579 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)