I'm using this code to load my net:
net = caffe.Classifier(MODEL_FILE, PRETRAINED,
mean=np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
I have doubts on three lines.
1- mean=np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)
What is mean? Should I use this mean value or another? And if yes, where can I get custom mean value? I'm using a custom dataset.
2- channel_swap=(2,1,0)
What channel_swap means? And again, should I use this value or an custom value?
And the last
3- raw_scale=255
What is raw_scale? And what value should I use?
I'm using Cohn Kanade dataset. All images are 64x64 and in grayscale.