I am running few ml algos from sklearn. But for all those I am getting the following error
/Users//anaconda/lib/python2.7/site-packages/sklearn/utils/validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric)
448 else:
449 y = column_or_1d(y, warn=True)
--> 450 _assert_all_finite(y)
451 if y_numeric and y.dtype.kind == 'O':
452 y = y.astype(np.float64)
/Users//anaconda/lib/python2.7/site-packages/sklearn/utils/validation.pyc in _assert_all_finite(X)
50 and not np.isfinite(X).all()):
51 raise ValueError("Input contains NaN, infinity"
---> 52 " or a value too large for %r." % X.dtype)
53
54
ValueError: Input contains NaN, infinity or a value too large for dtype('float64')
Please note that my design matrix has no nan or infinite value. Here is what I did to check:
np.isfinite(X_cohort_pr).all()
Out[259]:
True
X.isnull().any().any()
Out[261]:
False
So if you see my data matrix has no null or infinite values. then why I am getting this error and how to resolve this?. This has taken me more than 8 hours in debugging it.Please help
EDIT2:
Here is the first five rows of the data matrix. It has total 800K rows and some 180 odd features.
array([[ 1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 1. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 1. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 1. ,
0. , 0. , -0.2637, 1. , 0. , 1. , 0. ,
0. , 1. , 0. , 1. , 0. , 0. , 1. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 1. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.012 , -0.012 , 0. , -0.0028,
-0.0108, 0. , -0.0111, -0.0135, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , -0.0034,
-0.0027, -0.0725, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
-0.0809, -0.355 ],
[ 1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 1. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 1. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.2413, 1. , 0. , 1. , 0. ,
0. , 1. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.012 , -0.012 , 0. , -0.0028,
-0.0108, 0. , -0.0111, -0.0135, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 1. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , -0.0034,
-0.0027, -0.0718, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
-0.0809, 0.1579],
[ 1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 1. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 1. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 1. ,
0. , 0. , 0.1688, 1. , 0. , 1. , 0. ,
0. , 1. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 1. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.012 , -0.012 , 0. , -0.0028,
-0.0108, 0. , -0.0111, -0.0135, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , -0.0034,
-0.0027, -0.0725, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
-0.0809, 0.1642],
[ 1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 1. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.2462, 1. , 0. , 1. , 0. ,
0. , 1. , 0. , 0. , 1. , 1. , 0. ,
0. , 0. , 0. , 1. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.012 , -0.012 , 0. , -0.0028,
-0.0108, 0. , -0.0111, -0.0135, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 1. , 0. , 0. , 1. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0.0004,
-0.0012, -0.069 , -0.0673, -0.0618, -0.0582, -0.0065, -0.057 ,
-0.0809, 0.1713],
[ 1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 1. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 1. ,
1. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.1273, 1. , 0. , 1. , 0. ,
0. , 1. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 1. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , -0.012 , -0.012 , 0. , -0.0028,
-0.0108, 0. , -0.0111, -0.0135, 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 1. , 0. , 0. , 1. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0.0037,
-0.0023, -0.0633, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
-0.0809, 0.1713]])
Also I have seen one I run SVM, then I get the same Nan, Inf error but it also prints some values as below. Again, there are no NaN anywhere. I have checked it completely. Still I don't know why it is throwing those values.
_unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
105 if not _unique_labels:
--> 106 raise ValueError("Unknown label type: %r" % ys)
107
108 ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))
ValueError: Unknown label type: 117456 0
117457 0
117458 0
117459 0
117460 0
117461 0
117462 0
117463 0
117464 0
117465 0
117466 2
117467 0
117468 0
117469 0
117470 NaN
117471 0
117472 NaN
117473 3
117474 0
117475 NaN
117476 0
117477 NaN
117478 6
117479 0
117480 0
117481 NaN
117482 NaN
117483 0
117484 NaN