I have a csv file that contains data in the following format.
Layer relative_time Ht BSs Vge Temp Message
57986 2:52:46 0.00m 87 15.4 None CMSG
20729 0:23:02 45.06m 82 11.6 None BMSG
20729 0:44:17 45.06m 81 11.6 None AMSG
I want to get read in this csv file and calculate the average BSs
for every hour. My csv file is quite huge about 2000 values. However the values are not evenly distributed across every hour. For e.g.
I have 237 samples from hour 3 and only 4 samples from hour 6
. Also I should mention that the BSs
can be collected from multiple sources.The value always ranges from 20-100
. Because of this it is giving a skewed result. For each hour I am calculating the sum of BSs
for that hour divided by the number of samples in that hour.
The primary purpose is to understand how BSs
evolves over time.
But what is the common approach to this problem. Is this where people apply normalization? It would be great if someone could explain how to apply normalization in such a situation.
The code I am using for my processing is shown below. I believe the code below is correct.
#This 24x2 matrix will contain no of values recorded per hour per hour
hours_no_values = [[0 for i in range(24)] for j in range(2)]
#This 24x2 matrix will contain mean bss stats per hour
mean_bss_stats = [[0 for i in range(24)] for j in range(2)]
with open(PREFINAL_OUTPUT_FILE) as fin, open(FINAL_OUTPUT_FILE, "w",newline='') as f:
reader = csv.reader(fin, delimiter=",")
writer = csv.writer(f)
header = next(reader) # <--- Pop header out
writer.writerow([header[0],header[1],header[2],header[3],header[4],header[5],header[6]]) # <--- Write header
sortedlist = sorted(reader, key=lambda row: datetime.datetime.strptime(row[1],"%H:%M:%S"), reverse=True)
print(sortedlist)
for item in sortedlist:
rel_time = datetime.datetime.strptime(item[1], "%H:%M:%S")
if rel_time.hour not in hours_no_values[0]:
print('item[6] {}'.format(item[6]))
if 'MAN' in item[6]:
print('Hour found {}'.format(rel_time.hour))
hours_no_values[0][rel_time.hour] = rel_time.hour
mean_bss_stats[0][rel_time.hour] = rel_time.hour
mean_bss_stats[1][rel_time.hour] += int(item[3])
hours_no_values[1][rel_time.hour] +=1
else:
pass
else:
if 'MAN' in item[6]:
print('Hour Previous {}'.format(rel_time.hour))
mean_bss_stats[1][rel_time.hour] += int(item[3])
hours_no_values[1][rel_time.hour] +=1
else:
pass
for i in range(0,24):
if(hours_no_values[1][i] != 0):
mean_bss_stats[1][i] = mean_bss_stats[1][i]/hours_no_values[1][i]
else:
mean_bss_stats[1][i] = 0
pprint.pprint('mean bss stats {} \n hour_no_values {} \n'.format(mean_bss_stats,hours_no_values))
The number of value per each hour are as follows for hours starting from 0 to 23
.
[31, 117, 85, 237, 3, 67, 11, 4, 57, 0, 5, 21, 2, 5, 10, 8, 29, 7, 14, 3, 1, 1, 0, 0]