I am trying to format some weather data from meteo.gr website.
All good so far.
- I can filter out headers
- and remove empty files
The problem as shown below is that in cases where the data file is missing all of the data besides the date (leftmost column) from the initial columns, pandas reads them as a single column dataframe.
Before you ask... pd.read_csv('...',delim_whitespace = 1))
)
Also
I would prefer if we did not skip any rows. If not I'll manage.
How do we solve, dear members?
1
2
3
4
5 18.5 22.5 3:30p 13.9 5:40a 1.1 1.2 0.0 7.1 35.4 4:00p W
6 20.6 22.1 12:40p 16.7 12:40a 0.1 2.4 0.0 19.0 54.7 5:50p S
7 20.9 22.2 1:40p 20.1 7:00a 0.0 2.6 0.0 22.9 53.1 10:50a S
8 19.7 21.7 7:00a 16.8 10:10a 0.1 1.4 16.2 11.1 56.3 4:10a S
9 18.6 22.2 1:00p 14.6 7:00a 0.8 1.1 0.0 12.1 56.3 3:30p W
10 20.8 23.2 10:50a 15.7 12:30a 0.2 2.7 0.0 25.7 69.2 10:10a S
11 20.2 22.2 12:40a 17.7 7:30a 0.0 1.9 0.0 11.6 54.7 12:30a W
12 17.9 20.1 1:20p 14.6 11:00p 0.8 0.3 1.6 6.9 38.6 2:20p NW
13 16.9 19.7 12:10p 13.8 2:50a 1.7 0.2 0.0 9.0 30.6 2:10p WNW
14 16.8 18.4 1:30p 15.8 4:30a 1.6 0.0 0.0 14.5 48.3 3:50p NW
15 16.8 19.3 2:20p 14.6 11:50p 1.7 0.1 0.0 6.0 30.6 12:10a NNW
16 18.6 20.8 12:20p 14.7 12:10a 0.3 0.6 0.0 15.1 45.1 2:20p NW
17 18.6 21.8 2:30p 16.6 3:50a 0.6 0.8 0.0 9.2 29.0 12:30p NW
18 18.9 21.6 11:40a 16.9 1:30a 0.3 0.9 0.0 13.8 38.6 10:50a NW
19 18.2 19.4 11:10a 17.3 11:30p 0.3 0.2 0.0 14.5 45.1 3:10p NNW
20 18.9 21.3 2:10p 17.4 12:30a 0.2 0.8 0.0 12.7 51.5 5:10a NW
21 18.9 21.4 2:00p 17.2 12:00m 0.2 0.8 0.0 10.5 37.0 2:50p NNW
22 17.9 20.6 3:20p 14.3 12:00m 0.9 0.5 0.0 8.4 25.7 12:30a WNW
23 15.7 18.4 2:10p 12.6 7:00a 2.7 0.0 0.0 6.3 20.9 5:20a W
24 16.2 18.8 1:20p 13.3 7:50a 2.2 0.1 0.0 6.8 19.3 3:10a W
25 16.7 18.8 10:10a 13.6 6:50a 1.7 0.1 0.4 8.7 25.7 1:50p WNW
26 16.9 20.2 1:10p 14.1 10:50p 1.6 0.2 0.0 6.9 29.0 2:20p NW
27 15.8 19.1 2:30p 12.4 7:10a 2.6 0.1 0.0 7.2 22.5 5:00a W
28 16.8 20.5 12:40p 13.3 6:40a 1.9 0.4 0.0 6.0 19.3 5:10a W
29 17.8 21.4 11:20a 14.1 5:50a 1.3 0.7 0.0 5.5 20.9 6:40p W
30 17.2 19.6 10:50a 14.6 11:50p 1.4 0.3 0.0 5.3 17.7 2:50p W