Hello and welcome to C++ land! You will love how much you hate it (or something like that). C++, while appearing to be similar to java in untrained eyes might look similar, is actually quite different semantically. Lets see how these semantics play out in c++ in regards to your question. First lets take a class:
class Foo {
public:
Foo() { std::cout << "In constructor\n"; }
~Foo() { std::cout << "In destructor\n"; }
};
Foo here is just a representative of any class you might want to use. Lets see what happens when we create and play with a normal Foo object:
{
Foo bar;
do_stuff(bar);
}
If we were to run code that looked like this, we would see:
In constructor
In destructor
This is because, when an object is created, it is constructed using the constructor. When it goes out of scope, the destructor is called (~Foo in our code) which deconstructs (or destroys) the object. This is actually a fairly common and powerful feature in C++ (known as RAII, as opposed to other forms of returning memory to the system, such as Garbage Collection). Armed with this new knowledge, lets see what happens when we play with a pointer to Foo:
{
Foo *bar = new Foo();
some_more_stuff(bar);
}
What happens here is we would see:
In constructor
This is because of how pointers are allocated versus how variables are allocated. The way pointers are allocated, they don't actually go out of scope normally, but their contents do. This is known as a dangling pointer. For a better example, take a look at this:
#include <iostream>
int* get_int() {
int qux = 42;
int *foo = &qux;
return foo;
}
int main() {
int *qazal = get_int();
std::cout << *qazal;
}
Thanks to modern operating systems, this memory will still be returned when the program finishes, but not during the running of the program. If we were to delete the pointer (in the same scope it was created) via delete, then that memory will actually be returned to the operating system at that time.