I think that shuffling the data.table row-wise and then applying unique(...,by)
could also work. Groups are formed with by
and the previous shuffling trickles down inside each group:
# shuffle the data.table row-wise
dt <- dt[sample(dim(dt)[1])]
# uniqueness by given column(s)
unique(dt, by = "z")
Below is an example on a bigger data.table with grouping by 3 columns. Comparing with @akrun ' solution seems to give the same grouping:
set.seed(2017)
dt <- data.table(c1 = sample(52*10^6),
c2 = sample(LETTERS, replace = TRUE),
c3 = sample(10^5, replace = TRUE),
c4 = sample(10^3, replace = TRUE))
# the shuffling & uniqueness
system.time( test1 <- unique(dt[sample(dim(dt)[1])], by = c("c2","c3","c4")) )
# user system elapsed
# 13.87 0.49 14.33
# @akrun' solution
system.time( test2 <- dt[dt[ , .I[sample(.N,1)] , by = c("c2","c3","c4")]$V1] )
# user system elapsed
# 11.89 0.10 12.01
# Grouping is identical (so, all groups are being sampled in both cases)
identical(x=test1[,.(c2,c3)][order(c2,c3)],
y=test2[,.(c2,c3)][order(c2,c3)])
# [1] TRUE
For sampling more than one row per group check here