I'm on Manjaro 64 bit, latest edition. HP pavilion g6, Codeblocks Release 13.12 rev 9501 (2013-12-25 18:25:45) gcc 5.2.0 Linux/unicode - 64 bit.
There was a discussion between students on why
- sn = 1/n diverges
- sn = 1/n^2 converges
So decided to write a program about it, just to show them what kind of output they can expect
#include <iostream>
#include <math.h>
#include <fstream>
using namespace std;
int main()
{
long double sn =0, sn2=0; // sn2 is 1/n^2
ofstream myfile;
myfile.open("/home/Projects/c++/test/test.csv");
for (double n =2; n<100000000;n++){
sn += 1/n;
sn2 += 1/pow(n,2);
myfile << "For n = " << n << " Sn = " << sn << " and Sn2 = " << sn2 << endl;
}
myfile.close();
return 0;
}
Starting from n=9944 I got sn2 = 0.644834, and kept getting it forever. I did expect that the compiler would round the number and ignore the 0s at some point, but this is just too early, no?
So at what theoretical point does 0s start to be ignored? And what to do if you care about all 0s in a number? If long double doesn't do it, then what does?
I know it seems like a silly question but I expected to see a longer number, since you can store big part of pi in long doubles. By the way same result for double too.