You can for example use aggregate
function (for an explanation how it works see: What is the equivalent implementation of RDD.groupByKey() using RDD.aggregateByKey()?)
from datetime import datetime
rdd = sc.parallelize([
u'2010-12-08 00:00:00', u'2010-12-18 01:20:00', u'2012-05-13 00:00:00'])
def seq_op(acc, x):
""" Given a tuple (min-so-far, max-so-far) and a date string
return a tuple (min-including-current, max-including-current)
"""
d = datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
return (min(d, acc[0]), max(d, acc[1]))
def comb_op(acc1, acc2):
""" Given a pair of tuples (min-so-far, max-so-far)
return a tuple (min-of-mins, max-of-maxs)
"""
return (min(acc1[0], acc2[0]), max(acc1[1], acc2[1]))
# (initial-min <- max-date, initial-max <- min-date)
rdd.aggregate((datetime.max, datetime.min), seq_op, comb_op)
## (datetime.datetime(2010, 12, 8, 0, 0), datetime.datetime(2012, 5, 13, 0, 0))
or DataFrames
:
from pyspark.sql import Row
from pyspark.sql.functions import from_unixtime, unix_timestamp, min, max
row = Row("ts")
df = rdd.map(row).toDF()
df.withColumn("ts", unix_timestamp("ts")).agg(
from_unixtime(min("ts")).alias("min_ts"),
from_unixtime(max("ts")).alias("max_ts")
).show()
## +-------------------+-------------------+
## | min_ts| max_ts|
## +-------------------+-------------------+
## |2010-12-08 00:00:00|2012-05-13 00:00:00|
## +-------------------+-------------------+