In my dataframe, there are NaN values in some rows. I want to delete these rows. I solve it with dataframe.dropna(how='any'). The result looks like:
date time open hign low close volume turnover
2 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
3 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
I want to reindex the rows of my dataframe, so I run:
length = dataframe.dropna(how='any').shape[0]
dataframe1 = dataframe.index(range(length))
But dataframe1 still keeps the old index values, like:
date time open hign low close volume turnover
0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
3 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
How can I make the number begin with 0 and delete the first two rows?
Desired result:
date time open hign low close volume turnover
0 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
1 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508