Environment: GCC 4.7.3 (arm-none-eabi-gcc) for ARM Cortex m4f. Bare-metal (actually MQX RTOS, but here that's irrelevant). The CPU is in Thumb state.
Here's a disassembler listing of some code I'm looking at:
//.label flash_command
// ...
while(!(FTFE_FSTAT & FTFE_FSTAT_CCIF_MASK)) {}
// Compiles to:
12: bf00 nop
14: f04f 0300 mov.w r3, #0
18: f2c4 0302 movt r3, #16386 ; 0x4002
1c: 781b ldrb r3, [r3, #0]
1e: b2db uxtb r3, r3
20: b2db uxtb r3, r3
22: b25b sxtb r3, r3
24: 2b00 cmp r3, #0
26: daf5 bge.n 14 <flash_command+0x14>
The constants (after expending macros, etc.) are:
address of FTFE_FSTAT is 0x40020000u
FTFE_FSTAT_CCIF_MASK is 0x80u
This is compiled with NO optimization (-O0), so GCC shouldn't be doing anything fancy... and yet, I don't get this code. Post-answer edit: Never assume this. My problem was getting a false sense of security from turning off optimization.
I've read that "uxtb r3,r3" is a common way of truncating a 32-bit value. Why would you want to truncate it twice and then sign-extend? And how in the world is this equivalent to the bit-masking operation in the C-code?
What am I missing here?
Edit: Types of the thing involved: So the actual macro expansion of FTFE_FSTAT comes down to
((((FTFE_MemMapPtr)0x40020000u))->FSTAT)
where the struct is defined as
/** FTFE - Peripheral register structure */
typedef struct FTFE_MemMap {
uint8_t FSTAT; /**< Flash Status Register, offset: 0x0 */
uint8_t FCNFG; /**< Flash Configuration Register, offset: 0x1 */
//... a bunch of other uint_8
} volatile *FTFE_MemMapPtr;