Say one has a lookup table summarizing the busy lives of a few people on this planet...
import pandas as pd
import numpy as np
import datetime as dt
from datetime import datetime as dt
t=pd.Timestamp
lu = pd.DataFrame({ 'name' : ['Bill','Elon','Larry','Jeff','Marissa'],
'feels' : ['charitable','Alcoa envy','Elon envy','like the number 7','sassy'],
'last ate' : [t('20151209'),t('20151201'),t('20151208'),t('20151208'),t('20151209')],
'boxers' : [True,True,True,False,True]})
Say one also knows where these people live and when they did certain things...
af = pd.DataFrame({ 'name' : ['Bill','Elon','Larry','Elon','Jeff','Larry','Larry'],
'address' : ['in my computer','moon','internet','mars','cardboard box','autonomous car','every where'],
'sq_ft' : [2,2135,69,84535, 1.32, 54,168],
'forks' : [7,1,2,1,0,np.nan,1]})
rand_dates=[t('20141202'),t('20130804'),t('20120508'),t('20150411'),
t('20141209'),t('20091023'),t('20130921'),t('20110102'),
t('20130728'),t('20141119'),t('20151024'),t('20130824')]
df = pd.DataFrame({ 'name' : ['Elon','Bill','Larry','Elon','Jeff','Larry','Larry','Bill','Larry','Elon','Marissa','Jeff'],
'activity' : ['slept','tripped','spoke','swam','spooked','liked','whistled','up dog','smiled','donated','grant men paternity leave','fondled'],
'date' : rand_dates})
One could rank these people according to addresses they live at as follows:
af.name.value_counts()
Larry 3
Elon 2
Jeff 1
Bill 1
Need 1: Using the ranking above, how would one create a new "ranked" dataframe composed of information from lookup table lu? Simply put, how does one make Exhibit A?
# Exhibit A
boxers feels last ate name addresses
0 True Elon envy 2015-12-08 Larry 3
1 True Alcoa envy 2015-12-01 Elon 2
2 False like the number 7 2015-12-08 Jeff 1
3 True charitable 2015-12-09 Bill 1
Need 2: Observe the output of the groupby operation that follows. How can one determine the time delta between the oldest and newest dates to rank members of lu according to such time deltas?.. Simply put, how does one get from the groupby to Exhibit D?
df.groupby(['name','date']).size()
name date
Bill 2011-01-02 1
2013-08-04 1
Elon 2014-11-19 1
2014-12-02 1
2015-04-11 1
Jeff 2013-08-24 1
2014-12-09 1
Larry 2009-10-23 1
2012-05-08 1
2013-07-28 1
2013-09-21 1
Marissa 2015-10-24 1
#Exhibit B - Calculate time deltas
name time_delta
Bill Timedelta('945 days 00:00:00')
Elon Timedelta('143 days 00:00:00')
Jeff Timedelta('472 days 00:00:00')
Larry Timedelta('1429 days 00:00:00')
Marissa Timedelta('0 days 00:00:00')
#Exhibit C - Rank time deltas (this is easy)
name time_delta
Larry Timedelta('1429 days 00:00:00')
Bill Timedelta('945 days 00:00:00')
Jeff Timedelta('472 days 00:00:00')
Elon Timedelta('143 days 00:00:00')
Marissa Timedelta('0 days 00:00:00')
#Exhibit D - Add to and re-rank the table built in Exhibit A according to time_delta
boxers feels last ate name addresses time_delta
0 True Elon envy 2015-12-08 Larry 3 1429 days 00:00:00
1 True charitable 2015-12-09 Bill 1 945 days 00:00:00
2 False like the number 7 2015-12-08 Jeff 1 472 days 00:00:00
3 True Alcoa envy 2015-12-01 Elon 2 143 days 00:00:00
4 True sassy 2015-12-09 Marissa NaN 0 days 00:00:00
Prior Research: This so post on getting max values using groupby and transform and this other so post on finding and selecting most frequent data are informative but don't work on series (the result of count_values()) or just trip me up... I've actually gotten the first part to work but the code is bugly and likely inefficient.
Easy Peasy Code Sharing Check out this IPython Notebook that lays everything out. Otherwise, check out the Python 2.7 code here.