I am writing a library with many function objects whose classes have several operator()
overloads that do not depend on the state of the classes and do not alter it. Now, I tried to make my code work with many old-style APIs (it is not a random need, I actually had to deal with such APIs) and therefore decided to make the function objects convertible to any function pointer corresponding to one of the overloads. At some point, I realized that I had too many such conversions to function pointer operators and that I should theorically be able to write a single variadic conversion operator. Here is a class implementing such a variadic operator:
struct foobar
{
template<typename... Args>
using fptr_t = void(*)(Args... args);
template<typename... Args>
operator fptr_t<Args...>() const
{
return [](Args... args) {
// Whatever
};
}
};
As you can see, I used the lambda conversion to function pointer to implement the conversion operator, which is not a problem since every function object I have is stateless. The goal was to be able to use the class as follows:
int main()
{
void(*foo)(int) = foobar();
void(*bar)(float, double) = foobar();
}
g++ has no problem compiling this code with the expected semantics. However, clang++ rejects it with a template substitution failure error:
main.cpp:21:11: error: no viable conversion from 'foobar' to 'void (*)(int)' void(*foo)(int) = foobar(); ^ ~~~~~~~~ main.cpp:11:5: note: candidate function [with Args = int] operator fptr_t<Args...>() const ^ 1 error generated.
Note that clang++ has no problem with such conversion operators as long as no variadic templates are involved. If I use a single template parameter, it will have no problem compiling the code. Now, should the code above be accepted or rejected by the compiler?