I am running a code that has always worked for me. This time I ran it on 2 .csv files: "data" (24 MB) and "data1" (475 MB). "data" has 3 columns of about 680000 elements each, whereas "data1" has 3 columns of 33000000 elements each. When I run the code, I get just "Killed: 9" after some 5 minutes of processing. If this is a memory problem, how to solve it?. Any suggestion is welcome !
This is the code:
import csv
import numpy as np
from collections import OrderedDict # to save keys order
from numpy import genfromtxt
my_data = genfromtxt('data.csv', dtype='S',
delimiter=',', skip_header=1)
my_data1 = genfromtxt('data1.csv', dtype='S',
delimiter=',', skip_header=1)
d= OrderedDict((rows[2],rows[1]) for rows in my_data)
d1= dict((rows[0],rows[1]) for rows in my_data1)
dset = set(d) # returns keys
d1set = set(d1)
d_match = dset.intersection(d1) # returns matched keys
import sys
sys.stdout = open("rs_pos_ref_alt.csv", "w")
for row in my_data:
if row[2] in d_match:
print [row[1], row[2]]
The header of "data" is:
dbSNP RS ID Physical Position
0 rs4147951 66943738
1 rs2022235 14326088
2 rs6425720 31709555
3 rs12997193 106584554
4 rs9933410 82323721
5 rs7142489 35532970
The header of "data1" is:
V2 V4 V5
10468 TC T
10491 CC C
10518 TG T
10532 AG A
10582 TG T