Kind of. You can construct cv::Mat_
and provide explicit type for elements, after that you don't have to write element type each time. Quoting opencv2/core/mat.hpp
While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element
access operations and if you know matrix type at the compilation time. Note that
Mat::at(int y,int x)
and Mat_::operator()(int y,int x)
do absolutely the same
and run at the same speed, but the latter is certainly shorter.
Mat_
and Mat
are very similar. Again quote from mat.hpp:
The class Mat_<_Tp>
is a thin template wrapper on top of the Mat class. It does not have any
extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to
these two classes can be freely but carefully converted one to another.
You can use it like this
Mat_<Vec3b> dummy(3,3);
dummy(1, 2)[0] = 10;
dummy(1, 2)[1] = 20;
dummy(1, 2)[2] = 30;
cout << dummy(1, 2) << endl;
Why I said 'kind of' in the first place? Because if you want to pass this Mat_ somewhere - you have to specify it's type. Like this:
void test(Mat_<Vec3b>& arr) {
arr(1, 2)[0] = 10;
arr(1, 2)[1] = 20;
arr(1, 2)[2] = 30;
cout << arr(1, 2) << endl;
}
...
Mat_<Vec3b> dummy(3,3);
test(dummy);
Technically, you are not specifying your type during a pixel read, but actually you still have to know it and cast the Mat to the appropriate type beforehand.
I guess you can find a way around this using some low-level hacks (for example make a method that reads Mat's type, calculates element size and stride, and then accesses raw data using pointer arithmetic and casting...). But I don't know any 'clean' way to do this using OpenCV's functionality.