Check out the bind_rows
function in the dplyr
package. It will do some nice things for you by default, such as filling in columns that exist in one data.frame
but not the other with NA
s instead of just failing. Here is an example:
# Use the dplyr package for binding rows and for selecting columns
library(dplyr)
# Generate some example data
a <- data.frame(a = rnorm(10), b = rnorm(10))
b <- data.frame(a = rnorm(5), c = rnorm(5))
# Stack data frames
bind_rows(a, b)
Source: local data frame [15 x 3]
a b c
1 2.2891895 0.1940835 NA
2 0.7620825 -0.2441634 NA
3 1.8289665 1.5280338 NA
4 -0.9851729 -0.7187585 NA
5 1.5829853 1.6609695 NA
6 0.9231296 1.8052112 NA
7 -0.5801230 -0.6928449 NA
8 0.2033514 -0.6673596 NA
9 -0.8576628 0.5163021 NA
10 0.6296633 -1.2445280 NA
11 2.1693068 NA -0.2556584
12 -0.1048966 NA -0.3132198
13 0.2673514 NA -1.1181995
14 1.0937759 NA -2.5750115
15 -0.8147180 NA -1.5525338
To solve the problem in your question, you would want to select for the columns in your master data.frame
first. If a
is the master data.frame
, and b
contains data that you want to add, you can use the select
function from dplyr
to get the columns that you need first.
# Select all columns in b with the same names as in master data, a
# Use select_() instead of select() to do standard evaluation.
b <- select_(b, names(a))
# Combine
bind_rows(a, b)
Source: local data frame [15 x 2]
a b
1 2.2891895 0.1940835
2 0.7620825 -0.2441634
3 1.8289665 1.5280338
4 -0.9851729 -0.7187585
5 1.5829853 1.6609695
6 0.9231296 1.8052112
7 -0.5801230 -0.6928449
8 0.2033514 -0.6673596
9 -0.8576628 0.5163021
10 0.6296633 -1.2445280
11 2.1693068 NA
12 -0.1048966 NA
13 0.2673514 NA
14 1.0937759 NA
15 -0.8147180 NA