I am new in python as well as in signal processing. I am trying to calculate mean
value among some frequency range of a signal.
What I am trying to do is as follows:
import numpy as np
data = <my 1d signal>
lF = <lower frequency>
uF = <upper frequency>
ps = np.abs(np.fft.fft(data)) ** 2 #array of power spectrum
time_step = 1.0 / 2000.0
freqs = np.fft.fftfreq(data.size, time_step) # array of frequencies
idx = np.argsort(freqs) # sorting frequencies
sum = 0
c =0
for i in idx:
if (freqs[i] >= lF) and (freqs[i] <= uF) :
sum += ps[i]
c +=1
avgValue = sum/c
print 'mean value is=',avgValue
I think calculation is fine, but it takes a lot of time like for data of more than 15GB and processing time grows exponentially. Is there any fastest way available such that I would be able to get mean value of power spectrum within some frequency range in fastest manner. Thanks in advance.
EDIT 1
I followed this code for calculation of power spectrum.
EDIT 2
This doesn't answer to my question as it calculates mean over the whole array/list but I want mean over part of the array.
EDIT 3
Solution by jez of using mask reduces time. Actually I have more than 10 channels of 1D signal and I want to treat them in a same manner i.e. average frequencies in a range of each channel separately. I think python loops are slow. Is there any alternate for that? Like this:
for i in xrange(0,15):
data = signals[:, i]
ps = np.abs(np.fft.fft(data)) ** 2
freqs = np.fft.fftfreq(data.size, time_step)
mask = np.logical_and(freqs >= lF, freqs <= uF )
avgValue = ps[mask].mean()
print 'mean value is=',avgValue